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Abstract 
 
We develop a benchmark to evaluate AI agents’ ability to acquire data and perform analysis tasks 
common in social science research. Testing six state-of-the-art agents (OpenAI, Anthropic Claude 3.5-
4.5, and Google Gemini) on progressively complex tasks using the FCC's broadband database, we find 
agents achieve moderate success on simple single-file downloads (52% average) but fail completely when 
required to download multiple data files (0% success) or perform basic analysis (0% success). Logistic 
regression analysis reveals that task complexity, specifically multi-year data requirements and analysis 
requirements, drives these failures, while instruction specificity has minimal and statistically insignificant 
effects. Despite dramatic year-over-year improvements in individual model performance (Claude's failure 
rate dropped from 76% to 4% on the simplest task), fundamental capability barriers remain: agents cannot 
reliably complete straightforward data workflows that take humans under a minute.  
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Introduction 
Artificial intelligence “agents” are the year’s buzzword. They are supposed to autonomously decide the 
tasks and workflow necessary to achieve a given outcome, promising to perform complex tasks for us 
(i.e., acting as our agents). A prototypical example would be finding and booking flights without any 
human intervention beyond being given the acceptable parameters. 
 
In the last year, AI Agents have gone from “highly experimental” to “experimental” thanks, in part, to 
“thinking”/”reasoning” models like OpenAI’s o3 and DeepSeek’s r11 and targeted training on tool-use. Of 
particular interest is “computer use” agents like those from OpenAI and Anthropic. These agents are able 
to use a browser to perform actions that a human could, like clicking on links and downloading files. 
ChatGPT, for example, shows the website the agent is browsing as it does so. 
 
AI agents are in their infancy and, just as certain instruments track the development of AI models, it is 
similarly possible to track the progress of agents in order to understand their effectiveness and 
development.  
 
A few agent benchmarks already exist.2 They show generally that the longer a task takes humans to 
complete, the less successful AI agents tend to be at it.3 Additionally, agent capabilities are improving 
rapidly: every seven months, agents can successfully complete tasks that take humans twice as long as 
before. 
 
Those tests, however, focused only on software engineering. Only a few tests focused on other fields, and 
those yielded conflicting results.4 Additionally, benchmarks should include methods of testing 
increasingly more complex tasks.5 
 
In this article, we develop a simple benchmark test for a data analytic task unrelated to software 
development. We use it to compare AI agents to each other and to humans.  
 
We find that the agents performed reasonably well on simple, well-specified tasks (52% average success 
rate) but failed completely when asked to download all available data files (0% success) or perform basic 

 
1 LLMs trained in part with Reinforcement Learning from Verifiable Rewards that produce a hidden “chain of 
thought” “internal monologue” before generating a final output 
2 OSWorld evaluates simple computer use tasks that would take an average person only a few minutes. OpenAI’s o3 
with Computer Use hit 42.9% with 200 steps (Xie et al 2024). SWE-Bench Verified 
(https://openai.com/index/introducing-swe-bench-verified/)  is based around real-world software engineering tasks 
collected from github, and METR’s RE-Bench (https://metr.org/blog/2024-11-22-evaluating-r-d-capabilities-of-
llms/), a benchmark of long time (2hrs+) AI research tasks. Currently, the best model on SWEBV is Claude Sonnet 
4.5Opus 4.1, at 65% (https://epoch.ai/benchmarks/swe-bench-verified). METR has not published recent RE-Bench 
data separate from their time horizon’s work, however, GPT-5 was able to do 2 hr 15 tasks correctly 50% of the time 
on a combination of SWEBV, Re-Bench, and shorter tasks (https://evaluations.metr.org/gpt-5-report/, 
https://arxiv.org/abs/2404.07972). 
3 https://metr.org/blog/2025-03-19-measuring-ai-ability-to-complete-long-tasks/ 
4 https://metr.org/blog/2025-07-14-how-does-time-horizon-vary-across-domains/ 
5 Or as close as possible with underlying errors in the evals - see for example this discussion of possible issues with 
GPQA Diamond https://epoch.ai/gradient-updates/gpqa-diamond-whats-left 
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analysis (0% success). While Claude models showed dramatic year-over-year improvement, with failure 
rates on the simplest task dropping from 76% to 4%, even the best agents cannot reliably complete 
straightforward data acquisition workflows that take humans under a minute. Regression analysis reveals 
that task complexity, not instruction specificity affects agent success. 

Method 
Social science tasks seem to be disproportionately represented among AI uses.6 Researchers tend to use 
varied datasets for different analyses and, outside of large, well-funded organizations, are unlikely to be 
able to afford purpose-built models or agents. As a result, agents that can find, clean, merge, and 
otherwise assemble datasets, particularly publicly available datasets, could be useful to practitioners.  
 
To that end, we develop a benchmarking approach to assess how well models/agents can do these tasks. 
Specifically, we focus this test around how well agents can obtain and work with data on U.S. broadband 
deployment from the Federal Communication Commission’s (FCC’s) national broadband map.7 
 
We measure the agents against four prompts of varying complexity of task and completeness of 
directions. Both matter. An agent becomes more useful as it is better able to complete complex tasks and 
to do so without detailed instructions. That is, an agent can be useful if it can complete complex tasks if 
the user provides detailed instructions, and can also be useful if it can complete simple tasks without 
being told how to do it, but it is most useful if it can do complex tasks without being told how to do them. 
 
For this benchmark we give an agent tasks of increasing complexity and fewer instructions on how to 
complete the task. The hardest test here is for an agent to answer a specific question by  downloading the 
data needed to answer the question and figure out how to run a simple analysis. The conceptual simplicity 
masks significant complexity. An agent needs to know how to find the data, navigate various web 
interfaces, make decisions about what data is required, download the data, and then perform calculations 
using those downloaded datasets.  
 
We ask the agents to download certain data on broadband from the Federal Communication 
Commission's (FCC’s) broadband map database and then perform some simple calculations. We built up 
the test with the following prompts. 
 
Task Type A: Exact instructions, Single year download 
Prompt: “Go to https://broadbandmap.fcc.gov, click the 'Download' button, and download the 

most recent fiber data for Iowa” 

 
6 See Wallsten, Scott. “Measuring AI Intensity by Occupation: Adjusting for Workforce Size.” November 2025. 
https://techpolicyinstitute.org/publications/artificial-intelligence/ai-intensity-by-occupation-adjusting-for-workforce/ 
7 I use the FCC data because it is well-defined, available at a specific online location, and updated regularly. 
Additionally, because I have worked with these data extensively I know the structure of the datasets and the website 
as well as other details that make it easier for me to understand the tasks I assign. Iowa because it is my home state. 
Go Hawkeyes. 
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Task Type B: Vague instructions, Single year download 
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Prompt: “Go to https://broadbandmap.fcc.gov/home and download the most recent fiber 
data for Iowa” 

 
Task Type C: Vague instructions, Multi-year download 

Prompt: “Go to https://broadbandmap.fcc.gov/home and download all the fiber data for 
Iowa” 

 
Task Type D: More specific instructions, Multi-year download, and some analysis 

Prompt: “Download the data from https://broadbandmap.fcc.gov/ to tell me how many 
locations in Iowa gained fiber availability each year between Dec 2022 and Dec 2024” 

 
The four tasks increase in complexity along three dimensions: instruction specificity (exact vs. vague), 
data scope (single year vs. multiple years), and task requirements (download only vs. download + 
analysis). This design allows us to isolate the separate effects of each factor. 
 
We tested models from Google, OpenAI, and Anthropic using their APIs. OpenAI and Google both offer 
one model trained to do computer use tasks, while Anthropic offered four versions of Claude with 
computer use. The oldest Anthropic model, Claude 3.5 (new), was discontinued midway through this 
experiment.8 
We ran each prompt 25 times per model. Each model run continued until the model failed to return a call 
to the computer use tool or for fifty steps, whichever came first. If the model asked a question about what 
to do containing “Proceed”/”continue”/”next step”/”like me to”/”Should I” I replied “Proceed with the 
next step.” If the model required any other human-in-the-loop step, the run terminated.9 

Results10 
Broadly speaking, the results are as one would expect: agents performed worse as instructions became 
less specific and tasks became more complex. Notably, none of the models were able to successfully 

 
8 We tested the following models: OpenAI’s “computer_use_preview”; Anthropic’s “claude-3-5-sonnet-20241022”, 
“claude-3-7-sonnet-20250219”, “claude-4-sonnet-20250514”, and “claude-sonnet-4-5-20250929”; and Google’s 
“gemini-2.5-computer-use-preview-10-2025.” For each model We built a simple agent scaffolding around the API 
to control a standardized E2B sandbox# with Chrome installed.  
E2B is a startup offering cloud sandboxes for AI Agents to run programs with. https://e2b.dev/ 
At each step, the screenshot of the current screen is sent to the model. The model then returns call to the computer 
use tool, an action to be taken. After the action is performed, a new screenshot is taken and the loop repeats. As the 
screenshots of the current position take up many tokens in the context window, for both cost and performance 
reasons the message history must be condensed as new steps are taken. The OpenAI API automatically condenses 
the model responses as more messages get added to the “conversation”/message history. For both Anthropic and 
Google I sent the message history to a separate instance of the given model every 5 responses to condense it. 
9 OpenAI’s Computer Use is extremely eager to confirm what it’s doing is right - “Should I proceed to download the 
file?” “Should I proceed to extract the zip?” etc. Ensuring human-in-the-loop is important, but for simple, safe tasks 
like these it’s a lot, and I’m a bit worried we’ll end with a Homer Simpson’s Drinking Bird situation, mindlessly 
hitting yes over and over. 
As the models were running in secure, isolated, E2B sandboxes with no personal data, slightly automating the 
human in the loop seemed low-risk. 
10 Full results, along with a link to a ZIP file of the model outputs, are available in the appendix. 
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analyze the data, as instructed in Task D. This section provides an overview of the results, detailed 
summary tables, and finally regressions that explore the role of specific instructions and complexity of the 
request. 
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Figure 1: Success Rates
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Figure 2: The Capability Cliff
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The tables below show more detailed results.  
 
Table 1 presents overall performance patterns. On simple download tasks(A and B), models achieve 46-
52% complete success on average.11 However, complete success drops to zero when tasks require 
downloading multiple years of data (Task C) or performing analysis (Task D). Measuring 'any progress' 
reveals that most models make partial progress on Task C (85% average) but struggle even to attempt 
Task D (59% average), suggesting two distinct capability barriers. 
 
Table 1: Complete Success Rate by Model and Task Type 

 Task A 
(Exact 

instructions, 
Single year 
download) 

Task B 
(Vague 

instructions, 
Single year 
download) 

Task C 
(Vague 

instructions, 
Multi-year 
download) 

Task D 
(Exact 

instructions, 
Multi-year 

download, and 
some analysis) 

OpenAI 80% 44% 0% 0% 

 
11 Descriptive averages are unweighted across models (e.g., 69% for Task A); regression-based averages weight all 
runs equally (e.g., 52% for Task A). The difference reflects model heterogeneity. 
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Claude 3.5 4% 16% 0% — 

Claude 3.7 4% 20% 0% 0% 

Claude 4 76% 84% 0% 0% 

Claude 4.5 72% 60% 0% 0% 

Gemini 76% 52% 0% 0% 

Average 52% 46% 0% 0% 

 
Notes: Based on 25 runs per model per task (n=150 per task for Tasks A-C; n=120 for Task D due to 
missing Claude 3.5). 
 
Table 2 
Task A Results 
 

 Model 

 OpenAI Claude 3.5 3.7 4 4.5 Gemini 

Success rates 

Correctly 
downloaded 

80% 4% 4% 76% 72% 76% 

Semi-Success rates 

Downloaded 
and processed 

20% 8% 0% 0% 0% 0% 

Downloaded 
multiple times 

0% 0% 96% 0% 24% 24% 

Failure rates 

Incorrect 
download 

0% 12% 0% 0% 0% 4%12 

Full failure 0% 76% 0% 24% 4% 0% 

 
The most common way the models failed with the direct instruction prompt was downloading the dataset 
multiple times, not realizing that they had already successfully downloaded it. While not a strict problem 

 
12 Downloaded multiple times and also downloaded wrong file once 
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for this use, it could be problematic in the case of larger datasets or bandwidth limitations as well as 
additional token costs. 
 
Claude 3.5 struggled to use the dropdown menu on the FCC site, correctly selecting Iowa but then 
attempting to scroll down the page without clicking out of the selector, leading to it selecting “Louisana” 
instead of scrolling down to the fiber data button. It then got stuck in a loop of the same failure for most 
of the runs. Claude 3.5 was also the only model, plus one run of Gemini, to download the wrong data 
(Iowa’s cable data, North Dakota’s fiber data, or trying to download Centurylink’s data). 
 
Claude 3.5 and OpenAI were the only models that attempted to do anything with the data once 
downloaded even though it was not instructed to. These actions mainly consisted of opening the 
downloaded zip file, although OpenAI also opened the resulting csv file twice in LibreOffice. 
 
Table 3 
Task B Results 
 

 Model 

 OpenAI Claude 3.5 3.7 4 4.5 Gemini 

Success rates 

Correctly 
downloaded 

44% 16% 20% 84% 60% 52% 

Semi-success rates 

Downloaded 
multiple times 

8% 0% 80% 16% 40% 48% 

Downloaded 
and processed 

40% 16% 0% 0% 0% 0% 

Failure rates 

Incorrect 
download 

0% 8%13 0% 0% 0% 16%14 

Full failure 8% 60% 0% 0% 0% 0% 

 
Task B performance is similar to Task A. A logistic regression predicting complete success on Tasks A 
and B (discussed in detail below) shows that vague instructions reduce success by 8.6 percentage points, 

 
13 Downloaded wrong file as well as correct file 
14  Downloaded multiple times and also downloaded wrong files 
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but this effect is not statistically significant (p=0.214) and is dwarfed by model fixed effects. None of the 
models went to the FCC’s map instead of the download page, despite the difference in the prompt leading 
to that being a possibility.  
 
Both of OpenAI’s failures resulted from  the model asking for more permission beyond the allowed 
“proceed or not” rule before downloading. In one of the success cases, the model did not realize it had 
already clicked the download button and asked for permission afterwards. This particular outcome–where 
the model asked for permission after it had performed the task–highlights how special care may be 
required in cases where permission/human-in-the-loop would be desirable. 
 
Table 4 
Task C Results 
 

 Model 

 OpenAI Claude 3.5 3.7 4 4.5 Gemini 

Success Rates 

Correctly Downloaded 0% 0% 0% 0% 0% 0% 

Failure Rates 

Downloaded only most 
recent data 

48% 12% 16% 24% 36% 72% 

Downloaded and 
processed only most 

recent data 

52% 0% 0% 0% 0% 0% 

Downloaded only most 
recent data and did so 

multiple times 

4%15 0% 84% 8% 40% 24% 

Downloaded only most 
recent data and 
summary data 

0% 0% 0% 68% 24% 4% 

Downloaded incorrect 
data 

0% 16% 0% 0% 0% 0% 

Full failure 0% 72% 0% 0% 0% 0% 

 
None of the models successfully download all releases of the Iowa fiber data. For the most part, they only 
downloaded the most recent data, once or several times. OpenAI’s model, as with the other prompts, 

 
15 Downloaded multiple times and processed 
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extracted the zip file and opened the csv, or tried to extract and open, several times. Claude 4 and 4.5, 
while failing to do the prompt as I intended, downloaded various files from the FCC’s “Summary” data. 
While this download was not what I intended or what humans are likely to do when looking at the website 
with the “download all available fiber data” task, it is closer to fulfilling the requirements than other 
models. Gemini performed similarly on one run. 
 
Gemini was the only model to open the “Availability Data As Of” dropdown menu to attempt to select 
data from previous time periods, although it did not follow through. This failure shows the difficulty of 
prompting agents. These results suggest the only way to reliably obtain earlier years is to specify every 
data release desired, which eliminates much of the benefit of automation. At the same time, perhaps the 
prompt could be clearer without explicitly laying out every release to download. 
 
Claude 3.5 at one point falsely insisted that it could not be used for "accessing and collecting data from 
government databases."  
 
Table 5 
Task D Results 
 

 Model 

 Open
AI 

Claude 3.7 4 4.5 Gemini 

Success Rates 

Downloaded 
2022/23/24 Data and 

processed fully 

0% 0% 0% 0% 0% 

Semi-success rates 

Downloaded 
2022/23/24 Data and 

started processing 

16% 0% 52% 0% 0% 

Downloaded 
2022/23/24 Data 

0% 0% 4% 0% 24% 

Downloaded 
2022/23/24 Data 
multiple times 

0% 68% 8% 100% 4% 

Failure rates 

Missed a year  68% 28% 36% 0% 24% 
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Downloaded additional 
data 

0% 4% 0% 0% 40% 

Full failure 16% 0% 0% 0% 8% 

 
The purpose of this prompt was to both test a slightly easier, but not fully specific, version of the 
download all data prompt, and also to add analytical tasks on top of it. The current Gemini computer use 
tools only support web browsing use cases, so it was not able to do the analysis portion. Anthropic retired 
Claude 3.5 from the API the day before we ran these trials. 
 
Due to the multiple parts of the prompt, the fine-grained outcomes display the most variability. Since the 
prompt included 2022, the models were able to download the older data more successfully than in the “all 
data” prompt. OpenAI would download and work on extracting 2024 before getting the other data. 
Gemini struggled to figure out which data to download, but usually retrieved at least some data from the 
2023 or 2022 years. Claude 3.7 and 4.5 both struggled to remember that they had already downloaded a 
year, leading to them looping between them. As expected, the most common missing year was 2023, the 
year the prompt did not explicitly include, although most of the missing year runs were missing both 2023 
and 2022. 
 
Claude 4 successfully downloaded the data, but struggled to properly extract it. OpenAI struggled a few 
times, but tended to be able to open it, although it frequently only opened one year of data. Once the data 
was extracted, the next step attempted by these two models was to open a file in LibreOffice. They did no 
real analysis once they had opened the data, in part because the files are so big and in part because they 
only opened one at a time. No model tried to write a script to process the data. 

Regression Analysis 
 
To isolate the separate effects of instruction specificity and task complexity, I estimate logistic regression 
models predicting agent success. The full dataset has 575 observations, where each observation is one run 
of the agent test: 25 runs × 6 models × 4 tasks, minus Claude 3.5 Task D. 
 
The basic equation to estimate is the following: 
 

 

Where: 

● Progress_i = 1 if observation i achieved complete or partial success (as specified in the results 
table), 0 otherwise 

● VagueInstruction_i = 1 for Tasks B and C, 0 for Tasks A and D 
● MultiYear_i = 1 for Tasks C and D, 0 for Tasks A and B 
● AnalysisRequired_i = 1 for Task D only, 0 otherwise 
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● Model_m = dummy variables for each model (Claude 3.5 omitted as reference category) 
● ε_i = error term 

Table 6 presents the results. 
 
Table 6: Logit Regression Results 
 

  Complete Success 
(Tasks A and B) 

Any Progress 
(All Tasks) 

TASK CHARACTERISTICS     
Vague Instruction -0.346 (0.278) [p=0.214] 0.310** [p=0.030] 
Multi-Year Requirement — -1.222*** [p<0.001] 
Analysis Required — -1.883*** [p<0.001] 
MODEL FIXED EFFECTS 
(Ref: Claude 3.5) 

    

Claude 3.7 0.205 [p=0.749] 3.492*** [p<0.001] 
Claude 4 3.604*** [p<0.001] 2.677*** [p<0.001] 
Claude 4.5 2.877*** [p<0.001] 4.041*** [p<0.001] 
Gemini 2.789*** [p<0.001] 3.277*** [p<0.001] 
OpenAI 2.702*** [p<0.001] 3.227*** [p<0.001] 
Observations 300 570 
Pseudo R² 0.246 0.395 

Marginal Effects (Percentage-Point Changes) 
Variable / Comparison Model 1 Model 2 

Vague Instruction -8.6 +6.0** 
Multi-Year Requirement — -23.8*** 
Analysis Required — -36.7*** 
Claude 3.7 (vs 3.5) +5.1 +67.9*** 
Claude 4 (vs 3.5) +89.4*** +52.1*** 
Claude 4.5 (vs 3.5) +71.4*** +78.6*** 
Gemini (vs 3.5) +69.2*** +63.8*** 
OpenAI (vs 3.5) +67.0*** +62.8*** 

 Note: p-values in brackets. Significance levels: * p<0.10; ** p<0.05; *** p<0.01. 

The first column examines the effect of vague instructions on simple tasks (Tasks A and B only). Moving 
from exact to vague instructions reduces complete success by 8.6 percentage points, but this effect is not 
statistically significant (p=0.214), suggesting instruction specificity matters less than anticipated. 

The second column examines all tasks using "any progress" (complete or partial success) as the outcome. 
Here we see the dramatic effect of task complexity: requiring agents to download data from multiple 
years (vs. just the most recent) reduces success by 24 percentage points, while adding an analysis 
requirement reduces success by an additional 37 percentage points. Vague instructions show a small 
positive effect in this specification, but this likely reflects (1) a measurement artifact as vague instructions 
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reduce complete success but increase partial success, as agents attempt tasks without clear stopping 
criteria,16 or (2) that while Task D specifies the years, the prompt does not include the “click the 
download button” that Task A included, somewhat muddying the “vague” versus “specific” division.  

An interaction model testing whether vague instructions hurt more on complex tasks showed no 
statistically significant interaction effect (p=0.226), confirming that complexity barriers affect all agents 
similarly regardless of instruction specificity. 

These results confirm that the "capability cliff" observed in the descriptive statistics is driven primarily by 
task complexity, not instruction ambiguity. Models struggle fundamentally with understanding 
requirements like "all available data" versus "most recent data" and with performing analysis after data 
acquisition. 

Conclusion 
Claude was the only model we could access that had multiple versions. But it gives us a glimpse at the 
model improvement over the past year since Claude 3.5’s computer use was released in October of 2024. 
The failure rate declined for the easiest prompt from 76% to 4%. At the same time, while we could 
complete the “download all data” task in 55 seconds, none of the models could do it at all and took 
around 7 minutes to fail. 
 
This report focused on agents using a graphical user interface. It is also possible to attempt these tasks and 
others like them using command-line agents that would interact with the FCC’s API. This is a promising 
area for future study. Harder tasks for the data downloading would also be worth exploring.  
 
One important point this project shows is that building good evals gets more complicated as task 
complexity increases. It is not possible to simply automatically grade these evals the way one can 
numerical math problems. In addition, the interesting results are not simple pass or fail, but how the 
models fail. It would, however, be worthwhile to look at how well LLMs can categorize the trajectories 
compared to humans. 
 
Regression analysis reveals that instruction specificity plays a surprisingly minor role in agent 
performance. Moving from exact to vague instructions reduces complete success by only nine percentage 
points on simple tasks. In contrast, task complexity has massive effects: requiring agents to download 
data from multiple time periods reduces any progress by 24 percentage points, while adding analysis 
requirements reduces progress by an additional 37 percentage points. No significant interaction exists 
between instruction specificity and task complexity, indicating that complexity barriers affect all agents 
similarly regardless of how clearly instructions are specified. 
 
These findings suggest that improving agent performance on research tasks requires addressing 
fundamental capabilities rather than optimizing prompt engineering. Agents need better training on multi-

 
16 The positive coefficient on vague instructions in Model 2 (β=0.31, p=0.03) disappears when examining complete 
success only (Model 1: β=-0.35, p=0.21), suggesting it captures differences in how partial success is achieved rather 
than a genuine beneficial effect of ambiguity. 
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file workflows, temporal reasoning about data scope, and code generation for analysis, not just clearer 
instructions. 
 

Appendix 
Zip file of screenshots and model responses for the agent runs 
 
Excel file of finer-grained categorization of run performance  


