
TPInsights Tuesday, December 10, 2019

Econometrics in the Cloud: Robust Standard
Errors in BigQuery ML

This TPInsight is part two of a series about how to extend cloud-based data
analysis tools – such as Google’s BigQuery ML – to handle specific economet-
rics requirements. In part 1, I showed how to compute coefficient standard
errors in BigQuery. Often, however, heteroskedasticity or autocorrelation in
the data means that the regression variance estimates – and thus the standard
errors - will be biased.
The solution to the heteroskedasticity standard error problem is to estimate
robust standard errors (also known as Huber-White standard errors). These
can be calculated easily in Stata using the robust option following most re-
gression commands, or in R using the sandwich package and the vcovHC
command. But what about in BigQuery? The formula for Huber-White
robust standard errors is √∑

r̂2
ij û

2
i∑

r̂2
ij

Where ûi is the residual from the original regression and r̂ij is the residual
from the regression of regressor j on the rest of the regressors. Optionally,
we can perform a degrees of freedom correction by multiplying this formula
by n/(n− k − 1), but as n is large and k is relatively small, the correction is
close enough to 1 that we can ignore it.

While this formula is slightly more complicated to implement than the one
for regular standard errors (as terms have not already been computed by
BigQuery), it can still be computed relatively easily. First, for each variable
we compute the regression of the remaining variables onto that one as we did
for the ordinary standard errors. We then compute the residuals using the
predicted value, and with simple arithmetic compute the standard errors.

To compute the residuals, we can either use BigQuery’s ML.PREDICT to
predict the values of the dependent variable or calculate the values directly
from the coeffients. Because we’re combining many regressions, it’s slightly
easier to calculate them without ML.PREDICT. First, get the coefficients:

SELECT processed_input, weight

FROM ML.WEIGHTS(MODEL `<dataset>.<model_name >`)

This query yields the weight (coefficient) for each input and the intercept
term, from which we can create an equation to predict a term. That is, we
take the coefficients (weights) and multiply them by the variable name, plus
the intercept term.

UPDATE `<dataset>.<data>`

SET residual_<term> = predicted_<term> - <term>

WHERE residual_<term> is null

Economics Staff

Scott Wallsten, PhD
(202) 828-4405

swallsten@techpolicyinstitute.org

Robert Hahn, PhD
(202) 828-4405

rhahn@techpolicyinstitute.org

Thomas Lenard, PhD
(202) 828-4405

tlenard@techpolicyinstitute.org

Sarah Oh, JD, PhD
(202) 425-7725

soh@techpolicyinstitute.org

Lindsay Poss, MS
(202)-828-4405

lposs@techpolicyinstitute.org

Nathaniel Lovin
(202) 828-4405

nlovin@techpolicyinstitute.org

For Press Inquiries
David Fish

(571) 389-4446
dfish@techpolicyinstitute.org

Technology Policy Institute
409 12th Street, SW

Suite 700
Washington, D.C. 20024

We can then calculate the numerator in the Huber-White robust standard error equation:

TPInights 1

https://techpolicyinstitute.org/2019/11/06/econometrics-in-the-cloud-extending-google-bigquery-ml/
https://en.wikipedia.org/wiki/Heteroskedasticity
https://en.wikipedia.org/wiki/Autocorrelation

SELECT SQRT(SUM(POW(residual_<term>, 2) * POW(residual_<regressand>, 2)))

FROM `<dataset>.<data>`

and the denominator:

SELECT SUM(POW(residual_<term>, 2))

FROM `<dataset>.<data>`

The next step is to divide the numerator and denominator (or combine the two previous equations into one query
to divide them), giving us the robust standard error.

As in part one, we can use Python to reduce the repetitiveness of the queries, like so:

#Nathaniel Lovin

#Technology Policy Institute

#

#!/usr/bin/env python

from google.cloud import bigquery

import math

import sys

from scipy.stats import t

client = bigquery.Client()

def addColumns(dataset, data, coeffs, regressand):

table_ref = client.dataset(dataset).table(data)

table = client.get_table(table_ref)

original_schema = table.schema

new_schema = original_schema[:]

for coeff in coeffs.keys():

if coeff != "__INTERCEPT__":

new_schema.append(bigquery.SchemaField("predicted_" + coeff, "FLOAT"))

new_schema.append(bigquery.SchemaField("residual_" + coeff, "FLOAT"))

new_schema.append(bigquery.SchemaField("predicted_" + regressand, "FLOAT"))

new_schema.append(bigquery.SchemaField("residual_" + regressand, "FLOAT"))

table.schema = new_schema

table = client.update_table(table, ["schema"])

assert len(table.schema) == len(original_schema) +

2*len(coeffs.keys()) == len(new_schema)

def predict(dataset, data, prediction, coefficients):

regression = ""

for coeff in coefficients.keys():

if coeff != "__INTERCEPT__":

regression += str(coefficients[coeff]['coefficient']) + "*" +

coeff + " + "

else:

regression += str(coefficients[coeff]['coefficient']) + " + "

regression = regression[:-3]

query = ("UPDATE `" + dataset + "." + data + "` SET predicted_" + prediction +

" = " + regression + " WHERE predicted_" + prediction + " is null")

query_job = client.query(query)

TPInights 2

result = query_job.result()

def residuals(dataset, data, variable):

query = ("UPDATE `" + dataset + "." + data + "` SET residual_" + variable +

" = predicted_" + variable + " - " + variable + " WHERE residual_" +

variable + " is null")

query_job = client.query(query)

result = query_job.result()

def squareSum(dataset, data, variable):

query = ("SELECT SUM(POW(residual_" + variable + ", 2)) FROM `" + dataset +

"." + data + "`")

query_job = client.query(query)

result = query_job.result()

for row in result:

return row.f0_

def topSum(dataset, data, variable, regressand):

query = ("SELECT SUM(POW(residual_" + variable + ", 2) * POW(residual_" + regressand +

", 2)) FROM `" + dataset + "." + data + "`")

query_job = client.query(query)

result = query_job.result()

for row in result:

return row.f0_

def coefficients(dataset, model_name):

coeffs = {}

query = ("SELECT processed_input, weight FROM ML.WEIGHTS(MODEL `" +

dataset + "." + model_name + "`)")

query_job = client.query(query)

result = query_job.result()

for row in result:

coeffs[row.processed_input] = {}

coeffs[row.processed_input]['coefficient'] = row.weight

return coeffs

def regressions(dataset, data, coeffs, regressand):

for coeff in coeffs.keys():

query = ("CREATE OR REPLACE MODEL `" + dataset + "." + coeff + "` " +

"OPTIONS (model_type='linear_reg', input_label_cols=['" +

coeff + "']) AS " +"SELECT " + ", ".join(coeffs.keys()) + " FROM `" +

dataset + "." + data + "` WHERE " +

" is not NULL and ".join(coeffs.keys()) + " is not NULL")

query_job = client.query(query)

result = query_job.result()

model_coeffs = coefficients(dataset, coeff)

predict(dataset, data, coeff, model_coeffs)

residuals(dataset, data, coeff)

coeffs[coeff]["top"] = math.sqrt(topSum(dataset, data, coeff, regressand))

coeffs[coeff]["bottom"] = squareSum(dataset, data, coeff)

error = coeffs[coeff]["top"]/coeffs[coeff]["bottom"]

coeffs[coeff]["se"] = error

return coeffs

TPInights 3

dataset = sys.argv[1]

data = sys.argv[2]

model_name = sys.argv[3]

regressand = sys.argv[4]

n = int(sys.argv[5])

coeffs = {}

coeffs = coefficients(dataset, model_name)

addColumns(dataset, data, coeffs, regressand)

predict(dataset, data, regressand, coeffs)

residuals(dataset, data, regressand)

coeffs.pop("__INTERCEPT__")

coeffs = regressions(dataset, data, coeffs, regressand)

for coeff in coeffs.keys():

stats = coeffs[coeff]

stats['ts'] = stats['coefficient']/stats['se']

stats['pv'] = 2*t.sf(abs(stats['ts']), n-len(coeffs.keys())-1)

print(coeff + " coefficient: " + str(stats['coefficient']))

print(coeff + " standard error: " + str(stats['se']))

print(coeff + " t-stat: " + str(stats['ts']))

print(coeff + " p-value: " + str(stats['pv']))

And running it as

python BigQueryRobustSE.py <dataset> <data> <model_name>

<regressand> <n>

where <dataset>is the BigQuery dataset where your model and data are
located, <data>is the BigQuery table with your data, <model name>is the
name of the original BigQuery ml model, <regressand>is the dependent
variable of the original regression, and <n>is the size of the sample.

To show how these work, let’s compare the output of this pro-
gram to the output of Stata and R for the same regressions. We’ll
use the “CollegeDistance” dataset from applied economics in R
(https://cran.r-project.org/web/packages/AER/AER.pdf).The “Col-
legeDistance” dataset has 4739 observations so the degrees of freedom
correction is smaller and the comparison should be close.

Unemployment Distance Tuition
Coefficient .1110363 -.023334 1.07464

Stata Standard Error .0070001 .0083202 .0547596
Robust Standard Error .006841 .0082369 .0388905

Coefficient 0.111036 -0.02333 1.07464
R Standard Error 0.00700 0.00832 0.05476

Robust Standard Error 0.006838 0 .008233 0.038874
Coefficient 0.1110363 -0.02333 1.07464

BigQuery Standard Error 0.0069 0.00815 0.05416
Robust Standard Error 0.006833 0.008222 0.03896

Now we have Huber-White Standard Errors in BigQuery. Eventually, I
will show the other robust standard error, Newey-West, but in the next post I
will show how to perform Two Stage Least Squares in BigQuery.

Recent TPInsights

Econometrics in the Cloud: Robust
Standard Errors in BigQuery ML

(Dec 10, 2019)

Econometrics in the Cloud:
Extending Google BigQuery ML

(Nov 6, 2019)

Economics, Experts, and Federalism
in Mozilla v. FCC (Oct 4, 2019)

The Law and Economics of Apple
Inc. v. Pepper (Dec. 20, 2018)

Stay tuned for more economic and
legal analysis from Washington, D.C.

in TPInsights. Contact Ashley
Benjamin at (202) 828-4405 for more

information

Technology Policy Institute

The Technology Policy Institute is a
non-profit research and educational

organization that focuses on the
economics of innovation,

technological change, and related
regulation. More information is

available at
www.techpolicyinstitute.org.

TPInights 4

https://cran.r-project.org/web/packages/AER/AER.pdf

