
TPInsights Friday, January 31, 2020

Econometrics in the Cloud: Extending Google
BigQuery ML

Traditionally, econometric and statistical data analysis have been, and
continue to be, done on local PCs. The tools of choice typically include
STATA, R, SPSS, and some others, and have been for decades. Meanwhile,
data storage and computer processing at levels unheard of even a few years
ago has become available in the cloud to everyone.

While econometric and statistical packages like STATA for local computation
have evolved extensively, such tools on the cloud are new and not nearly
as extensive. In order to speed our own big data analyses, we have had to
expand the set of tools available in the cloud. This blog post elaborates on
our efforts and makes the results available to others to use and, hopefully,
improve.

Specifically, we’ve been attempting to use BigQuery ML’s linear regression
feature to do certain regressions more quickly than we could do locally on
STATA. Out of the box, however, BigQuery ML is missing some important
econometric features. In this series of posts, I will be showing how to extend
the BigQuery ML results with some simple SQL code.

Calculating Standard Errors

A key part of any regression is understanding the statistical significance of
the estimated coefficients, yet BigQuery ML’s linear regression feature does
not calculate standard errors. In this first post, I show how to calculate the
standard errors of the coefficients.

The sample coefficient standard errors is calculated as

σ̂√
n− 2 ∗ (xj)(1−R2

j )

where σ̂ is the standard error of the regression, n is the size of the sample,
sd(xj) is the standard deviation of regressor j, and Rj2 is the correlation
between regressor j and the rest of the regressors.

The standard error of the regression is also called the root mean squared error.
The mean squared error can be found using Big Query ML’s ML.EVALUATE
function, and the root mean squared error is simply its square root. That is:

SELECT

sqrt(mean_squared_error) as root_mean_squared_error

FROM

ml.EVALUATE(MODEL <model name>,

(SELECT * FROM <dataset>))
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n, the sample size, is specified when you construct the model and thus is already known.
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The standard deviation of each regressor is found in ML.FEATURE:

SELECT input, stddev FROM

ML.FEATURE_INFO(MODEL <model>)

What Big Query ML does not readily provide is the correlation between the regressors. To calculate these cross-
correlations, we regress the rest of the independent variables onto each one, and obtain the r-squared:

CREATE OR REPLACE MODEL `dataset.var1`

OPTIONS (model_type='linear_reg', input_label_cols=['var1']) AS

SELECT

var1,

var2,

Var3

FROM

<dataset>

WHERE

var1 is not NULL and var2 is not NULL and var3 is not NULL

SELECT

r2_score

FROM

ml.EVALUATE(MODEL `dataset.var1`)

Of course, repeating these commands for many variables would be tedious and impractical. Thankfully, we can use
python to script the process and compute t-stats and p-values@the same time:

#bigquerystandarderrors.py

#Nathaniel Lovin

#Technology Policy Institute

#

#!/usr/bin/env python

from google.cloud import bigquery

import math

import sys

from scipy.stats import t

client = bigquery.Client()

def rmse(model):

query = ("SELECT sqrt(mean_squared_error) as root_mean_squared_error "+

"FROM ml.EVALUATE(MODEL `" + dataset + "." + model + "`)")

query_job = client.query(query)

result = query_job.result()

for row in result:

return row.root_mean_squared_error

def standef(model):

query = ("SELECT input, stddev FROM " +

"ml.feature_info(MODEL `" + dataset + "." + model + "`)")

query_job = client.query(query)
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result = query_job.result()

coeffs = {}

for row in result:

coeffs[row.input] = {'stddev': row.stddev}

return coeffs

def rsquared(data, coeffs):

for coeff in coeffs.keys():

query = ("CREATE OR REPLACE MODEL `" + dataset +

"." + coeff + "` " + "OPTIONS " +

"(model_type='linear_reg'," +

" input_label_cols=['" + coeff +

"']) AS " + "SELECT " +

", ".join(coeffs.keys()) + " FROM `" +

dataset + "." + data + "` WHERE " +

" is not NULL and ".join(coeffs.keys())

+ " is not NULL")

query_job = client.query(query)

result = query_job.result()

query = ("SELECT r2_score FROM ml.EVALUATE" +

"(MODEL `" + dataset + "." + coeff + "`)")

query_job = client.query(query)

result = query_job.result()

for row in result:

coeffs[coeff]['r2_score'] = row.r2_score

return coeffs

def standarderror(root_mean, sqrtn, coeffs):

for coeff in coeffs.keys():

corr = math.sqrt(1-coeffs[coeff]['r2_score'])

stddev = coeffs[coeff]['stddev']

error = root_mean/(sqrtn*stddev*corr)

coeffs[coeff]['standard error'] = error

def coefficients(coeffs, dataset, model_name):

query = ("SELECT input, weight FROM (ML.FEATURE_INFO" +

"(MODEL `" + dataset + "." + model_name +

"`) LEFT JOIN ML.WEIGHTS(MODEL `" + dataset +

"." + model_name + "`) ON input = "

+ "processed_input)")

query_job = client.query(query)

result = query_job.result()

for row in result:

coeffs[row.input]['coefficient'] = row.weight

dataset = sys.argv[1]

data = sys.argv[2]

model_name = sys.argv[3]

n = int(sys.argv[4])

sqrtn = math.sqrt(n)

root_mean = rmse(model_name)

coeffs = standef(model_name)

coeffs = rsquared(data, coeffs)

standarderror(root_mean, sqrtn, coeffs)
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#The t-stat for the null hypothesis Beta_hat = 0 is

#Beta_hat/se(Beta_hat)

coefficients(coeffs, dataset, model_name)

for coeff in coeffs.keys():

coeffs[coeff]['tstat'] = coeffs[coeff]['coefficient']/coeffs[coeff]['standard error']

coeffs[coeff]['pvalue'] = 1-t.sf(coeffs[coeff]['tstat'], n-len(coeffs.keys())-1)

for coeff in coeffs.keys():

print(coeff + " coefficient: " + str(coeffs[coeff]['coefficient']))

print(coeff + " standard error: " + str(coeffs[coeff]['standard error']))

print(coeff + " t-stat: " + str(coeffs[coeff]['tstat']))

print(coeff + " p-value: " + str(coeffs[coeff]['pvalue']))

Before running this script, make sure you have followed the instructions to set up the credentials in your current
terminal session. Then use python to run this script as so:

python bigquerystandarderrors.py <dataset> <data> <model_name> <n>

where <dataset>is the bigquery dataset where your model and data are located, <data>is the bigquery table with
your data, <model name>is the name of the original bigquery ml model, and <n>is the size of the sample.

This gives us the baseline OLS standard errors estimate. Issues like heteroskedasticity and autocorrelation can make
the estimates inconsistent, which is why my next post will focus on how to compute robust standard errors with
BigQuery.
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