

A PROOF OF CONCEPT

NICOLAS WOLOSZKO, OECD

TECHNOLOGY POLICY INSTITUTE - FEB 22 2017

Economic forecasting with Adaptive Trees

1 Introduction

2 Adaptive Trees

Proof of Concept

Perspectives

I. MOTIVATION

Linear models are constrained by economic complexity

Non-linearities

Multiple interactions

Multiple discontinuities

Structural change

Relationships between variables may change over time, suddenly or incrementally

Context-specific impact of policies

Depending on countries

Depending on people's place in income, skills, or age distribution

Especially around turning points

Housing prices against GDP growth, UK

Non-linear behaviour past a given threshold, at a tipping point

Inflation in the US, 1970-2017

Monetary policy helped tame inflation and changed the nature of the Philipps Curve, by stabilising inflation expectations.

Machine learning provides tools to tackle these challenges

What is machine learning?

Powerful methods designed to extract information from data

How is different from econometrics?

- Modelling without a model: no prior knowledge is required
- Relies on cross-validation to prevent overfitting and underfitting

How can it be useful?

- Uncover complex patterns in data, even from a vast array of variables
- Data comes first, theory comes next

II. ADAPTIVE TREES

A non-linear approach to capture structural change in the economy

Adaptive Trees: two steps

1. Tackling non-linearities with regression trees

2. Adressing *structural change*: adaptive trees

Training regression trees

At each node, the algorithm selects the splitting variable + splitting point that minimises sub-group variance of GDP growth

Training regression trees

The tree is grown using past data (training). Then it makes a prediction about the future (here, Q+1), using contemporaneous and past data.

THEN

there is a recession

Adaptive Trees: two steps

1. Tackling *non-linearities* with regression trees

2. Adressing *structural change*: adaptive trees

Trade off quantity/relevance

- The economy is ever-changing. That is part of « economic complexity ».
- Consequence: recent past more informative about near future than remote past
- There may be sudden structural breaks (during crises), or incremental structural change
- We tackle structural change using an original technique that we developed for the purpose of economic forecasting: « Adaptive Trees »

Adaptive Trees are a transformation of the Gradient Boosting algorithm

Tackling incremental structural change:

Give more weight to the recent past

<u>Tackling sudden structural change</u>:

- Detect structural change: measuring how accurately the algorithm trained on the training set can predict the latest observations
- If not well: gives even more weight to the recent observations that are hard to predict

III. PROOF OF CONCEPT FORECAST OF GDP GROWTH IN G6 COUNTRIES

- 1. Forecast simulations
- 2. Comparison with OECD forecasts
- 3. Comparison with Consensus forecast

Setting of forecast simulations

- Simulations in pseudo-real time of a forecast of GDP growth in G6 countries
- Using the exact same data as benchmark OECD Indicator Model (housing prices, indutrial production, PMI...) so as to provide a methodological benchmark

Compare with two benchmark forecasts:

OECD Indicator Model	M+3 & M+6	VAR	2007 – 2016, quarterly, q-o-q
Consensus Forecast	Y+1	Average of expert forecasts	2010 – 2016, yearly, y-o-y

Measuring performance:

- Accuracy: <u>Root Mean Square Error</u> (RMSE)
- <u>Forecast Directional Accuracy</u> (FDA): % times forecasts right direction

Comparison with OECD Indicator Model

1. UK, M+3

Accuracy: +25 %

Dir. Accuracy: +4 % -1.0%

2. USA, M+3

Accuracy: +9 %

Dir. Accucacy: +32 % -1.0%

Comparison with OECD Indicator Model

3. Japan, M+6

Accuracy: + 29 %
Dir. Accuracy: + 42 % 3.0%

Overall improvement from Indicator Model

G6	RMSE	FDA
M+3	12%	27%
M+6	23%	32%

Adaptive Tree forecast consistently has better accuracy, and much better directional accuracy than the Indicator Model, while using the exact same data.

Comparison with Consensus forecast

Comparison with Consensus forecast

Y+1	Gain in accuracy	Gain in directional accuracy
UK	51%	25%
USA	40%	150%
France	6%	20%
Japan	24%	50%
Germany	25%	20%
Italy	43%	0%
Overall	32 %	44%

At Y+1 from 2010 to 2016, Adaptive trees are on average **32% more accurate** and **44% more directionally accurate** than the Consensus Forecast.

IV. CONCLUSION

Economics & machine learning

• Great tool to explore the **complexity** of the economy

• <u>Performance</u>:

- At M+6, Adaptive Trees are 23% more accurate and 32% more directionally accurate than the **Indicator Models**, using the exact same data
- At Y+1, Adaptive Trees are 32% more accurate and 44% more directionally accurate than the **Consensus**

Numerous possible extensions using broader set of variables

THANK YOU

Questions?

ADDITIONAL MATERIAL

Comparison with Consensus forecast

Table 1: Comparison of forecast accuracies, y-o-y

Y+1	AT	Consensus	Gain from consensus
uk	0.648	1.335	51%
USA	1.472	2.447	40%
France	1.106	1.178	6%
Japan	2.917	3.820	24%
Germany	1.597	2.143	25%
Italy	0.848	1.489	43%
Overall	1.431	2.069	32%

Table 2: Comparison of forecast directional accuracies, yo-y

Y+1	AT	Consensus	Gain from consensus
UK	83%	67%	25%
USA	83%	33%	150%
France	100%	83%	20%
Japan	50%	33%	50%
Germany	100%	83%	20%
Italy	67%	67%	0%
Overall	81%	61%	44%

Problem: interpretability

- Modelling complexity requires more complex models
- Trade off simplicity/accuracy:
 - Too much simplicity: fail to capture important variations
 - Too much complexity: fail to produce a sensible story

Interpretability

Variable contributions, Italy M+3

Variable selection

- For each variable:
 - What relevant lag: M-1, M-2, M-12, M-24?
 - In level ? In growth rate ?
- Data-driven variable selection:
 - Based on variable importance
 - Variable importance: a variable is all the more important that it is high in the tree, close to the root
 - Accounts for multiple interactions (can keep a variable that is loosely correlated with the GDP but that provides relevant interactions. Ex: price of gold)

Complexity v. Bayesian econometrics

- In a regression with 10 variables, should we want to test all possible multiple interactions : 10¹⁰ possibilities
- With tree-based approaches, we explore all possible interactions with 120 variables
- Amount of prior knowledge:
 - Linear econometrics: we know the form of the relationship
 - Bayesian econometrics: we know the relationship can take any of the know forms
 - Machine learning: we know nothing

