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Abstract

Medical human-errors cost society billions of dollars in the US and around the world. A recent estimate
claims that measurable medical errors in the US accrued to US$17.8 billion dollars in 2008. Many of these
errors can be prevented by applying current artificial intelligence techniques, e.g. machine learning, on
existing medical data in order to predict these high-risk error situations. Since most of the settings leading
to human-induced errors are known and well-studied, predicting and preventing them is more attainable.
Using US and Peruvian ICU data, we develop, demonstrate, and discuss how machine learning models could
possibly aid in identifying and preventing medical human-errors. We propose that artificial intelligence is
most valuable in helping prevent or reduce medical human-errors when doctors must make decisions where
clinical trials are lacking, providing some guidance and support to doctors grounded in historical data.

1. Introduction

Medical human errors cost society billions of dollars in the US and around the world (Van Den Bos et al.,
2011). Many of these human errors go undetected, making it difficult to have a clear understanding of
the magnitud of the problem. Therefore, estimates of the negative effects of human errors on society have
been derived through many different methods (Thomas and Petersen, 2003). The types of errors that harm
patients receive the name of measurable medical human errors, and provide a lower bound or conservative
estimate of the actual effects of these types of errors on society.

The economic effects of these measurable errors translate into both direct and indirect costs. Direct costs
are mainly due to an increase in the medical costs of providing inpatient, outpatient, and prescription drug
services to individuals who are affected by medical errors. Indirect costs are related to increased mortality
rates among individuals who experience medical errors and related to lost productivity due to related short-
term disability (Chmieleski et al., 2010).

Many studies have tried to quantify the direct and indirect costs of measurable medical human errors (Brady
et al., 2009). The most recent group of studies places the accrued costs of measurable human-erros in the US
at US$17.8 billion dollars in 2008 (Van Den Bos et al., 2011), with 2,500 excess deaths and over 10 million
excess days missed from work due to short-term disability (Chmieleski et al., 2010), and an estimate of 1 in 4
injury related visits to hospitals in the US were subject to medical errors between 2008 and 2009 (David et al.,
2013). While these studies focus on estimating the cost of measurable medical errors, usually extrapolating
findings from one dataset or clincal domain to a more general population, most studies do not focus on
actions to reduce the heavy costs society must bear due to these errors.

Our study calls attention to what can be done to help reduce medical errors, using as ilustratory examples
AI models developed based on ICU data from the US and Peru. Two research questions motivate our
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investigation: 1) What types of medical errors are best address through AI models, and 2) how can AI help
doctors and other medical professionals make better decisions. Specifically, we explore how AI-based models
can help predict what patients should or should not receive diuretics when in septic shock in US ICUs,
and we explore how AI-based models can help doctors decide what children to admit into an ICU in Peru.
We hypothesis that by using machine learning - a subfield of AI - in high-risk decision settings we could help
see a reduction in medical human errors.

The article is structured as follows. Section 2 provides a literature review on medical human-errors, artificial
intelligence, and medical applications. Section 3 presents our experimental setup as a means to explore our
proposal of how AI could help the medical space, describes the data and AI-based prediction models. Section
4 presents and discusses the mortality prediction results for the ICU data in the US. This paper ends with
conclusions, policy implications, and next steps in Section 5.

2. Literature review

Multiple studies have tried to answer the question of what are the costs of medical human errors. One
of the first and most influential studies, due to its methodological and statistical sampling rigor, was the
Harvard Medical Practice Study (HMPS), which found that adverse events were a common component of
hospital care (Brennan et al., 1991; Leape et al., 1991). The HPMS study employed a two stage chart review
methodology in which nurses first analyze patient records with high likelihood adverse event presence, and
then doctors thouroughly review selected charts to confirm possible adverse events and to evaluate the
ocurrance of suboptimal care. The HMPS determined 1984 incidence rates for all types of medical injuries
in New York, estimating healthcare costs of US$3.8 billion, implying national cost of errors slightly above
US$50 billion (Johnson et al., 1992). While large population-based chart reviews put forth by the HPMS
methodology are not without criticism, they are still widely used and have recently been validated and used
at a national level (Thomas and Petersen, 2003).

A study focusing on medical injuries in Utah and Colorado found that the total costs for preventable medical
errors in the two states in 1992 came up to US$308 million (in 1996 dollars), implying national costs of errors
of about US$17 billion. The study was based on the review of medical records from a representative random
sample of 14,732 discharges from 28 hostpitals in 1992 (Thomas et al., 1999). In 1999, the Institute of
Medicine released a report titled To Err is Human, estimates that 98,000 Americans die any given year
in hospitals due to medical human-errors based on extrapolations from the HMPS and the Utah-Colorado
study (Donaldson et al., 2000). A more recent study found that the rate of medical errors was 133.3 per
1,000 hospitalizations, with affected patients incurring 18.5 percent more in hospital charges and having a
14.6 percent longer hospital stays than patients not exposed to medical errors (Layde et al., 2005).

One of the most recent studies estimated medical error costs at about US$19.5 billion in the United States
during the year 2008 (Van Den Bos et al., 2011). Most of this increased cost (US$17 billion) was due
additional services needed by individuals affected by these medical errors. The study also finds indirect costs
increases due to higher mortality rates (US$1.4 billion) and lost productivity levels brough on by short-term
disability (US$1.1 billion). The study uses medical claim data for a large insured populationto the United
States population, and by extrapolating to the United States obtaines obtains 6.3 million medical injuries
in 2008, out of which the authors estimate that 1.5 million were associated with a medical error. The study
found that the total cost per error was approximately $13,000, obtaining a total cost of US$19.5 billion in
medical error in the US. Additionally, these errors representes 2,500 additional deaths and more than 10
million additional days missed from work due to short-term disability (Chmieleski et al., 2010).

The most common and costly types of measurable medical errors in the US in 2008 were postoperative
infection (US$3.4 billion), pressure ulcer (US$3.3 billion), mechanical complication of noncardiac device,
implant or graft (US$1.1 billion), and postlaminectomy synfrom (US$1 billion), accounting for almost half
of all estimated medical error associates costs that year (Van Den Bos et al., 2011). In their Utah and
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Colorado study, Thomas et al grouped adverse events into five large categories of errors: operative, drug
related, diagnostic or therapeutic, procedure related, and other, based on individual chart reviews. Of
these errors, complications post-operations were the most costly (39% of all medical errors) (Thomas et al.,
1999).

Medical errors in the Intensive Care Unit (ICU)

Intensive care units (ICUs) are hospital departments in which patients who are dangerously ill are kept under
constant observation and given intense care. Given the critical nature of patients in ICUs, human medical
errors can have even more severe adverse effects than in other hospital departments.

The causes for medical errors have been studied and documented (Donchin et al., 1995). One prospective
observational study of 391 found 120 adverse events in 79 patients (20.2%), including 66 (55%) nonpreventable
and 54 (45%) preventable adverse events as well as 223 serious errors, which occurred during the ordering or
execution of treatments, especially medications (61%; 170/277) (Rothschild et al., 2005). The study found
that while many types of errors were identified, the most common type of error was to carry out the intended
treatment. Another prospective study in a pediatric ICU identified 52 medication errors throughout 26 12-
hr observation periods, which included 357 reviewed written orders and 263 observed doses . Of the 52
medication errors, 42 (81%) were considered clinically important (Buckley et al., 2007). One study found
that sleep deprivation was a major determinant of human medical errors, specially among medical interns,
and that reducing the number of hours interns work per week can reduce serious medical errors in the
ICUs (Landrigan et al., 2004).

Can AI help address medical errors in ICUs

In this study, we seek to explore whether AI can help reduce human medical errors. The term “artificial
intelligence” (AI) is not easy to define, reason why many different definitions exist. The word “artificial”
refers to homething that doesn’t occur naturally, while the word “intelligence” has been defined in many
ways. The psychologist Howard Gardner proposes a definition that focuses on problem-solving: “Intelligence
is the ability to solve problems, or to create products, that are valued within one or more cultural settings”
(Howard, 1983). Society sometimes classifies as “artificial intelligence” only those activities that it perceives
as “hard” for computers to do (like correctly describing what is occuring in an image) in contrast to “simpler”
taks computers more often do today (like calculations in spreadsheet).

An intuitive definition of AI proposed by MIT Professor Thomas Malone suggests that AI is “machines acting
in ways that seem intelligent” (Malone, 2017). A more formal definition proposed by MIT Professor Patrick
Winston’s says that “AI is about the architectures that deploy methods enabled by constraints exposed by
representations that support models of thinking, perception, and action” (Winston, 1984).

There are two main categories in the field of AI: “narrow AI” and “general AI”. Narrow AI can be defined
as “a machine-based system designed to address a specific problem” (Kiron, 2017), while general AI refers
to machines that can solve a diverse array of types of problems on their own, similar to humans. Currently,
all known applications of AI are narrow AI types. While general AI is one of the most active research topics
today, experts such as Ray Kurzwel and Patrick Winston predict that general AI applications are decades
away (Creighton, 2018).

Diverse studies have also shown that artificial intelligence and machine learning algorithms can help doctors
make better decisions, many times outperforming their human counterparts on the diagnosis of certain
illnesses or in the prediction of certain medical outcomes such as mortality or length of stay (Saly et al.,
2017; Ghassemi et al., 2014; Pirracchio et al., 2015; Henry et al., 2015; Mayaud et al., 2013). One type of
medical error is one when doctors make a wrong prediction regarding the appropriate treatment for ICU
patients. Paredes et al explore this in the context of US ICUs and conclude that machine learning could aid
physicians by providing better predictions about the effect of certain treatments and the likely evolution of
sepsis patients (Paredes and O’Reilly, 2016).
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Despite the promises and hype around AI, there has been much criticism and unfullfiled promises as well. One
example is Watson, IBM’s AI software that has been marketed heavily as the ultimate physician companion,
but has yet to deliver any results (Ross and Swetlit, 2017).

3. Experimental Setup

The task of employing AI to help reduce medical human-errors in the medical space is not easy nor straigh-
forward. In order to envision these benefits, many of which will take years to materialize, we propose two
experiments using medical data and machine learning to demonstrate how AI can help improve decision
making, and hopefully reduce human medical errors. We draw from Paredes et al for the work on US ICUs
and complement this work with an analysis of ICU data from Peru.

The purpose of these experiments is to demonstrate how AI, and in particular machine learning, can help
predict health outcomes, thus having the potential to support decisions in the ICU. While we do not predict
medical errors through our models, we demonstrate the predictive power of these models in order to inspire
and demostrate how prediction high-risk medical error situations could be possible.

In our first experiment, we employ AI to help doctors better understand if sepsis patients should receive
diuretics by predicting the effect of diuretics on two medical outcome (mortality and length of stay). In our
second experiment, we employ AI to predict child mortality, thus potentially helping doctors understand
what patients to admit.

3.1. Data

We employ data from intensive care units (ICUs) from the US and Peru. For the US, we employ the MIMIC
dataset, which is a large database containing information relating to patients admitted to critical care units at
a large tertiary care hospital in Boston. MIMIC includes vital signs, medications, laboratory measurements,
observations and notes charted by care providers, fluid balance, procedure codes, diagnostic codes, imaging
reports, hospital length of stay, survival data, and more (Johnson et al., 2016). For Peru, we employ data
from Peru’s Children’s Hospital (PCH), which has been collected in the last decade by Dr. Tantalean, one
of PCH’s former directors.

US ICU Experiment - MIMIC database

We pre-process the MIMIC database for our analysis. After data extraction and filtering we obtain a study
group of 1,522 patients who were or had been in septic shock (3.81% of the entire MIMIC database). Out of
these 1,522 patients, 189 received diuretics (D+)(12.4% of study group), and 1,333 (87.6% of study group)
did not receive diuretics (D−). For each patient, age, gender, and race were obtained along with 21 clinical
features as can be seen in table 1. These 21 clinical features were measured on three days (day of entry,
day before and day of diuretics decision) for a total of 66 features per patient. Additionally, there are two
outcome measures for each patient: 30 day mortality after ICU discharge, and ICU length of stay.

Table 1 Patient Features MIMIC database

4



Age
Gender
Race (white / non-white)
SAPS II Score
SOFA Score
Elixhauser Comorbidity Index
Congestive Heart Failure Indicator
Cardiac Arrhythmias Indicator
Valvular Disease Indicator
Hypertension Indicator
Uncomplicated Diabetes Indicator
Complicated Diabetes Indicator
Renal Failure Indicator
Liver Disease Indicator
Obesity Indicator
Creatinine Level (day of measurement average)
Fluid Inputs (day of measurement sum)
Fluid Outputs (day of measurment sum)
Vasopressor Use
Mechanical Ventilation Use
Maximum Blood Pressure (on measurement day)
Average BP (on measurement day)
Mortality (did patient die within 30 days of leaving ICU)
Length of Stay (days)

A fundamental problem for doctors treating sepsis patients in ICUs is that the patients arrive with varying
degrees of illness severity, so what worked for one patient in the past might not work for a very similar
patient. Additionally, there is no standard protocols for determining if a patient should receive diuretics,
which is one of the main treatment alternatives for septic patients. Thus, an AI model that helps predict
whether a patient will benefit from diuretics taking into account all available data could help doctors make
better decisions and reduce errors related to treatments.

Table 2 summarizes the average values for all clinical variables within each group for D+ and D− patients
on the day of ICU entrance and the day of diuretics decision, and shows whether these mean differences are
statistically different through a Welch two sample t-test.

Table 2 Cohort Balance between D+ and D− patients. Summary of average feature values.
Systematic differences between D+ and D− patients
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Variable Name D+ D− Different
Distribution?

Age (Years) 66.24 66.14 No (0.93)
Gender (% of males) 42.86% 42.46% No (0.92)
Race (% of whites) 0.53% 2.18% Yes (0.01)
Day of ICU entrance SAPS II Score 15.78 14.99 Yes (0.02)
Day of Diuretics Decision SAPS II Score 17.93 17.06 Yes (0.03)
Day of ICU entrance SOFA Score 9.52 7.37 Yes (0.00)
Day of Diuretics Decision SOFA Score 10.35 8.94 Yes (0.00)
Elixhauser Comorbidity Index 3.164 2.993 No (0.20)
% with Congestive Heart Failure 48.15% 31.36% Yes (0.00)
% with cardiac arrhythmias 37.04% 25.13% Yes (0.00)
% with valvular disease 13.76% 8.25% Yes (0.00)
% with hypertension 26.98% 27.46% No (0.89)
% with uncomplicated diabetes 24.87% 19.35% No (0.10)
% with complicated diabetes 4.76% 5.78% No (0.55)
% with renal failure 5.29% 8.63% No (0.07)
% with liver disease 8.47% 9.38% No (0.68)
% with obesity 2.65% 1.35% No (0.29)
Day of ICU entrance Creatinine 1.570 1.88 Yes (0.01)
Day of Diuretics Decision Creatinine 1.623 1.85 No (0.06)
Day of ICU entrance Fluid Inputs 1010.86 1113.63 No (0.26)
Day of Diuretics Decision Fluid Inputs 3089.24 2560.45 Yes (0.03)
Day of ICU entrance Fluid Outputs 1994.13 1385.59 Yes (0.00)
Day of Diuretics Decision Fluid Outputs 1652.45 1596.06 No (0.82)
Vasopressor (% of patients) 0.86 0.65 Yes (0.00)
Mechanical Ventilation (% of patients) 0.94 0.68 Yes (0.00)
Day of ICU entrance Maximum BP 114.31 114.57 No (0.87)
Day of Diuretics Decision Maximum BP 108.32 110.91 No (0.09)
Day of ICU entrance Average BP 77.12 79.23 Yes (0.04)
Day of Diuretics Decision Average BP 74.85 78.09 Yes (0.00)
Mortality (% that died) 0.33 0.378 No (0.17)
Length of Stay (days) 15.18 6.30 Yes (0.00)

From Table 2 we can see that diuretics patients have significantly different health conditions upon entering
the ICU (different distributions equal to Yes), and also at the moment when the decision to receive diuretics
was taken. This suggests that we face selection bias. Patients who receive diuretics are more ill when
they come into the ICU (higher SAPS II, SOFA scores), and on the diuretics decision day (SAPS II score,
SOFA score). This worse health can be a confounding factor by influencing diuretics decision and health
outcomes. Additionally, diuretics patients seem to have overall higher morbidity (congestive heart failure,
cardiac arrythmia, and valvular disease). We also observe higher fluid levels, higher creatinine levels, and
higher need for mechanical ventilation or vasopressors for D+ patients.

Given this systematic difference, we will need to employ a model that addresses selection and confounding
bias, and that can potentially help doctors predict whether diuretics (or another course of treatment) wil be
effective.

Peru ICU Experiment - PCH database

We pre-process the PCH database for our analysis. After data extraction and filtering we obtain a study
group of 1,708 patients. Out of these patients, 321 patients do not survive (S−) (18.7% of study group),
and 1387 survive (S+) (81.3% of study group). For each patient, age, gender, weight, height and clinical
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characteristics were obtained for a total of 32 features as can be seen in table 3. Additionally, we have one
outcome measure for each patient (30 day mortality), which will be the variable we are trying to predict.

Table 3 Patient Features PCH database

Age
Gender
Proceeding department
Proceeding medical service
Reason for admission
Traqueotomy
Glucose level upon entry
Mechanical Ventilation Use
Post operatory entry
Congenial malformation
Nutritional level
Weight
Height
Number of failing organs
Respiratory organs deficiency
Cartiovascular organs deficiency
Neurological organs deficiency
Hepatic organs deficiency
Septic
SIRS
Catheter
Mortality

3.2. Models

US ICU Diuretics and Sepsis Mortality Model

Our first model uses the MIMIC critical care database to predict the effect of diuretics administration on
patients with a sepsis diagnosis by matching diuretics positive patients (D+) to diuretics negative patients
(D−) using propensity matching (Rosenbaum and Rubin, 1983) following Paredes et al (Paredes and O’Reilly,
2016), but using the updated MIMIC III database and modifying the main method with machine learning
as described below. Before matching patients, we observe that D+ and D−patients experience the same
mortality rates, and that D+ patients spend 8.8 additional days in the ICU. Moreover, significant health
differences between (D+) and (D+−) patients are observed on a number of features upon entrance to the
ICU. Therefore, and to address the systematic differences between (D+) and (D+−) patients we apply
propensity score matching (PSM) to control for these differences (Dehejia and Wahba, 2002).

PSM builds a similarity-of-treatment score (i.e. the propensity score or PS) from a set of patient features
(D+ and D−) and then matches patients on this score. A PS is the conditional probability of assignment
to a particular treatment given a vector of observed covariates. In our model, the study group compares
treatment (being administered diuretics) vs. no treatment (not receiving diuretics), denoted by the variable
z with values 1 and 0. Each patient is represented by a set of covariates x = {x1, x2, ..., x66}. The propensity
score then is the conditional probability that a patient with vector x of observed covariates will be assigned
to treatment, given by:

e(x) = Pr(z = 1|x).

(1)
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A PS can be estimated using a logit model for

e(x) =
e(y)

1− e(y)
= α+ βT f(x),

(2)

where y = log[ e(x)
1−e(x) ], α and β are parameters, and f(·) defines a regression function. 66 covariates of

the study group were included in the initial propensity score model. Many propensity score models can be
built depending on the vector of features defined and the model specification used. Given this ample design
space, one common approach is to iteratively explore what combination of features provides a model that
maximizes some the gain of information on the outcome of interest.

We develop several diuretics propensity models by running logistic regressions of the different feature sets on
the diuretics indicator. We then use these models to obtain each patient’s PS score, which can be interpreted
as the probability that a particular patient will be administered diuretics, conditional on the selected health
indicators. After the PS is produced for each patient, we discard D− patients with minimal feature support.
For every D+ patient, we match them to at least one D−patient based on the similarity measure, and check
for experimental group balance to assess how similar they are in terms of health indicators. Finally, we
estimate the average treatment effects on the treated (ATT) obtaining standard errors and p-values, by
regressing the outcome variable (30 day mortality or length of stay) on one or both of the PS and feature
sets.

We use the dataset described in section 3.1 and choose the parameters we will vary. We select five health
indicators sets (all features, best feature set defined through a stepwise algorithm, two sets of features
suggested by physicians, and a set of features selected through a genetic algorithm). We allow more than
one D− patients to be matched to each D+ patient, specify that matching can be done with replacement
(D− patients can be matched more than once), define a similarity measure (Euclidean, Mahalanobis, and
PS), and select nearest neighbor as the matching algorithm. This combination of parameter definitions leads
us to 9 different models for each outcome.

Peru ICU Mortality Model

Our second model compares a machine learning model to PRISM, one of the standard prediction scores
used in ICU settings (Pollack et al., 1988). After testing different machine learning models to predict
mortality (random forest, support vector machines, naive bayes, CART), we employ a XGBM machine
learning model (Chen et al., 2015). We follow the common set up for training a machine learning model
where we use 80% of the data to train the model, and then test the model on the remaining 20% (test or
hold-out set) and evaluate the performance of the model based on how well it predicts if a patient will survive
or not.

4. Results

For our US ICU experiment, we run 9 experiments for each outcome tuning different model parameters, and
find that diuretics is associated with a 10% to 18% mortality decrease (compared to similar mortality rates
without controlling for differences) and between 5.9 to 8.4 additional ICU days, suggesting that the effect
of diuretics was being underestimated when comparing these outcomes but not controling for confounding

8



and selection bias through matching and machine learning. Our machine learning model predicts with 78%
accuracy the likelihood that a sepsis patient will die after 30-days of ICU discharge. These results suggest
that AI-based support systems could help physicians decide what treatment to provide patients, taking into
account vasts amounts of data and finding patters that doctors would normally miss, specially in high-stress
environment.

These types of AI-models are especially useful when physicians are faced with decisions for which clear
evidence is lacking. In the medical world, evidence is established through clinical trials. However, there
are many illnesses or health situations where clinical trials have not been done, and will most likely never
happen. It is in these medical situations where machine learning models can help make sense of historical
data finding patters and making predictions and recomendations to doctors.

For our Peru ICU experiment, we observe that PRISM predicts 169 survivors (compared to the 261 observed
survivers) and 173 deaths (compared to the observed 81 deaths). Thus, current mortality scoring measures
would heavily overestimate the risk of children seeking admitence to the ICU. Given that physicians face
scarce resources (beds, nurses, medicines, etc.), and that they would like to accept patients whom they can
help, the results of PRISM could be leading PCH ICU doctors to accept patients who are not critical, thus
restricting access to resources. When we observe the predictions of our AI model, we see that the the AI-

Predicted
Died No Yes Total

Observed No 140 121 261
Yes 29 52 81

Total 169 173 342

Table 1: PRISM Mortality Predictions on the Test set

based model predicts 230 survivors (compared to the 261 observed survivors) and 111 deaths (compared to
the observed 81 deaths). Compared to the PRISM predictions, our AI model is more acurate at classifying
patients who will survive and not survive. This increased prediction accuracy could help doctors better
assign resources and support their decision of whom to admit into the ICU.

Predicted
Died No Yes Total

Observed No 199 62 261
Yes 31 49 80

Total 230 111 341

Table 2: AI-based model Mortality Predictions on the Test set

5. Conclusions, policy implications and next steps

Medical errors bring heavy costs on society, both in monetary and non-monetary forms. We proposed that
AI can help physicians and other medical professionals in situations where these preventable medical errors
are more likely. We show how an AI-based model can help doctors more accurately predict mortality of
sepsis patients where they to prescribe diuretics. We also show how another AI model can outperform one
of the standard prediction scores used extensively in the medical field.
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We believe that physicians are far away from being replaceble by machines. However, we do believe there
are many instances in which AI-based models can outperform humans given their ability to process vast
amounts of data at incredible speeds, their virtual perfect memory, and their ability to not be affected by
human emotions or fatigue. Echoing Obermeyer et al, in the end the application of AI in medicine is likely to
be like a team sport, with physicians, nurses, and technical staff supporting themselves heavily on AI-based
systems (Obermeyer and Lee, 2017).

However, we recognize that unless data is available, the benefits of AI and machine learning will be non-
existent, reason why digital transformation efforts in the medical space are of utmost importance. The two
example models presented in this study are basically useless in most medical settings due to the inexistence
of similar data.

Next steps include examining a medical claims database in Peru, in order to estimate the costs of medical
errors in Peru, similar to the studies done in the US and presented above.
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