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Abstract

In this paper, we propose an information-based approach to eliminate inefficiency in traffic

systems in the era of autonomous vehicles. We build up theoretical models to coordinate vehicles

through Waze, a pervasive crowdsourcing mapping app. We apply the idea of Bayesian persuasion

(Kamenica and Gentzkow, 2011) in the basic model of a single vehicle and implement the unified

information design framework (Bergemann and Morris, 2017) in the general model. Since the

reliability of the information source (Waze) is crucial, we also incorporate queueing theory into the

congestion model to obtain more accurate predictions of the traffic conditions. We demonstrate

the significant efficiency improvement of implementing theoretical economic approach in the robotic

area.
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1 Introduction

Traffic congestion is an inevitable problem for people in urban areas across the world. Economists

and transportation researchers have devoted decades to understanding the human behavioral inter-

actions involved and looking for solutions to reduce it. Unfortunately, the usual solution of expand-

ing road system capacity does not always work. As Pigou (1932) and Braess (Braess, Nagurney and

Wakolbinger, 2005) have discovered, if every driver chooses the path that looks the most favorable

to her, increasing capacity can lead to longer travel time overall. This counterintuitive finding

stems from the fact that each driver’s selfish decision in the aggregate can lead to a suboptimal

social outcome. Roughgarden and Tardos (2002) and Roughgarden (2005) provide a quantitative

measure of the inefficiency resulting from drivers selfish routing behavior. They demonstrate that,

generally, inefficiency, also known as “the price of anarchy”, can be extremely severe. Apparently,

the inefficiency of anarchy can be eliminated through coordination. Nevertheless, nowadays, there

seems to be no viable tool that can achieve it. However, as technology advances, especially in the

era of the Internet of Things (IoT), is there anything people can do to handle the inefficiency of

the transportation systems?

When we think about the future of transportation, we cannot ignore the development of au-

tonomous vehicles. Tesla, one of the pioneers of self-driving cars, has attracted exuberant investors

through its potential to revolutionize the auto industry. Its stock valuation was thus boosted to sur-

pass Ford and become comparable to that of GM. Other automakers, such as Volkswagen, BMW,

and Ford, and tech companies such as Apple, Google, and Uber, are also competing fiercely in the

autonomous driving market. It seems that autonomous vehicles are the future of transportation.

While the various advantages of autonomous vehicles, including increasing safety and the facilita-

tion of mobility services, are frequently discussed, their effect on improving the efficiency of the

traffic systems is rarely mentioned.

In this paper, we propose an information-based approach stemming from game theory to elim-

inate inefficiency in the era of autonomous vehicles. We believe robotics is an ideal area to apply

theoretical economic methods. In fact, though numerous theorems have been derived by economists

who study game theory, the theoretical results are hardly applied directly to guiding human be-

haviors because of their complexness and randomness. However, in the era of the IoT, since robots

act as programmed, theories are suitable for determining the optimal robotic behaviors. Thus,

to guide the routing decisions for autonomous vehicles, we apply the idea of Bayesian persuasion
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(Kamenica and Gentzkow, 2011) and information design (Bergemann and Morris, 2017) through

Waze, a pervasive crowdsourcing mapping app for coordinating driverless vehicles.

Under Waze’s current practice of providing the same traffic information to all vehicles, negative

externalities from vehicles’ myopic and selfish decisions can occur, hampering the efficiency of the

entire traffic system efficiency. When selecting its route, a vehicle does not usually anticipate

other vehicles’ strategies or consider its impact on the other vehicles behind it. For instance, when

traveling on a highway during rush hours, vehicles are notified by Waze about traffic slowdownS

on their route ahead. Given this information, most vehicles decide to make a detour to a local

road that currently has no congestion. Consequently, these rerouted vehicles suffer from an overall

longer travel time due to the congestion they create on the local route. This example by Pigou

(1932) is one of the earliest displays of the suboptimality of selfish routing. Given this issue, the

information-based approach we propose provides direction that varies with vehicles. Receiving

different traffic data, vehicles find distinctive optimal routes from their perspectives. In this way,

they are coordinated through customized information conveyed by Waze.

Since Waze is the basis for the information source, it is important that the information source be

reliable. However, a vehicle currently searches for the best route based only on the aggregated traffic

information provided by Waze at the time of departure, which may end up with a suboptimal route.

Since roads are connected and vehicles can switch from one road to another (especially in urban

areas), the traffic situation along a route varies continuously. A route that seems optimal based on

Waze’s data when a vehicle departs may no longer be optimal after the vehicle has been traveling

for a while. A dramatic traffic volume change could occur on some section of the route ahead. For

example, when a vehicle departs, it may choose to go on the highway which has less congestion

than the local road, as shown by Waze. At the same time, an accident happens nearby. Although

the accident seems irrelevant to this vehicle, a number of vehicles deviate from their original routes

and merge onto the highway to avoid the accident area. The vehicle therefore experiences a longer

travel time than expected. It could have arrived at the destination earlier if Waze had anticipated

the traffic volume increase on the highway and had indicated to the vehicle that the local road

would be a better choice. In other words, under the current practice, Waze’s traffic data become

“outdated” and could be misleading if Waze does not prepare for possible future traffic situation

changes.

Given the two aforementioned issues, we are motivated to obtain better routing instructions

and make Waze a more efficient data source for autonomous vehicles. The primary cause of the
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issues is that the current Waze does not provide onboard computing systems with predictive and

personalized traffic information to steer vehicles in an optimal fashion. Accordingly, we propose

an innovative Waze to improve on the current one in two ways. Waze has very rich individual-

level traffic data, which should be exploited for a broader usage. In fact, Waze knows the starting

point, destination, and planned route of each vehicle. Based on this, we first suggest that, using

the queueing theory, the innovative Waze can calculate the monment that any vehicle arrives at a

specific section of a route and can thus estimate and predict the future traffic flow. Hence, Waze will

be more advanced, since it has more accurate and predictive traffic information. In addition, Waze

will be improved to provide information that varies with each vehicle. Receiving different traffic

data, vehicles can be provided with distinctive optimal routes from their own perspectives. They

are thus coordinated through customized information conveyed by Waze. Therefore, externality

problems such as the Braess’ paradox can be eliminated, and the “price of anarchy” is reduced.

The innovative Waze we propose works according to the following procedure. Firstly, just as

the current version, Waze collects and clusters inclusive crowdsourced real-time traffic data. The

data are then incorporated into the queueing model of the congestion to precisely predicts the

traffic. Then, upon several vehicles’ setting their destinations and departing, besides current traffic

situation, additional personalized information is computed for each vehicle. The information is

conveyed to each vehicle by implementing augmented reality, a way to supplement/manipulate

autonomous vehicles’ onboard computers’ vision of the current (or even future) traffic conditions.

Since the routing problem is decentralized to be solved by each vehicle, the onboard computer with

the vision that uses Waze’s information makes decisions in the best interest of that vehicle. After

these vehicles have departed and are on the route selected by their own onboard computers, Waze

updates its data about these vehicles, as well as the entire traffic system, and then works on newly

departing vehicles.1 The most important step is therefore to solve for the optimal information

provided to each vehicle. Thus, in this study, we build up theoretical models and look into the

dynamic information design problem for the innovative Waze to minimize the total waiting time

of vehicles. To improve the efficiency of the traffic system, the optimal information structure is

designed to enable vehicles to foresee the changing traffic conditions and take into account other

vehicles on the road.

1 The advanced Waze is responsible for assisting in the routing problem which is the major decision for a vehicle.
It gives “instructions” to autonomous vehicles by providing further information. As for a vehicle’s micro level
activities, including slowing down at intersections, keeping a safe following distance, turning the vehicle, and reacting
in unexpected situations, the onboard steering system will take over.
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Figure 1: The Braess’ Paradox

Before discussing our models in detail, we introduce the following example to illustrate the

potential benefits of the innovative Waze proposed in this paper. In the simple four–node traffic

network shown in Figure 1, vehicles departs from node s and heads for node t. Each edge is labeled

with the cost function c(·) denoting the cost (e.g., travel time) of traveling along the edge as a

function of the amount of traffic. Assume a vehicle A is driving along the edge (s, v). The vehicle

must then decide to travel either along v → w → t or along v → t when it arrives at node v. Since it

is indifferent between the two routes, vehicle A chooses each route with probability 1/2. If another

vehicle, vehicle B, is driving along the edge (s, w) unanticipated by vehicle A, then the expected

total cost of the two vehicles is 3. However, if the vehicles are equipped with the innovative Waze,

then Waze, foreseeing vehicle B along the edge (s, w), will have vehicle A drive on (v, t). Then,

the resulting total cost is 2. The innovative Waze can even give instructions from the beginning,

when the two vehicles depart from s. By providing different information to the two vehicles, Waze

makes one vehicle travel along s→ v → t and the other along s→ w → t. The Braess’ paradox is

thus avoided and the roads are utilized in the best way possible.

To study the real-time traffic information design problem for Waze, we build a discrete-time

dynamic programming model. We apply the idea of Bayesian persuasion (Kamenica and Gentzkow,

2011) for the single-vehicle case and apply the unified information design framework of Bergemann

and Morris (2017) in a general model. Then, we extend the models to a dynamic setting. The

framework can be used to study incomplete information games with a designer who commits to

providing information to several players. The information designer’s problem is to identify the

information structure and equilibrium such that, when the players maximize their ex ante expected

utilities, the designer’s payoff is maximized. In our setting, since autonomous vehicles (players)2

2In §2, we introduce examples in which one or two vehicles depart almost at the same time and are thus considered
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are robots with or without human beings in them, instead of maximizing their utility functions, we

assume that vehicles minimize their expected waiting time. The feasible information structures,

defined as Bayes correlated equilibria, satisfy the obedience condition, which requires that, if the

designer privately communicates information as stochastic action recommendations, 3 the vehicles

will want to follow the recommendations. Among these information structures, Waze (information

designer) chooses the one that minimizes the expected total waiting time of all vehicles during the

entire rush hour.

Our discrete-time model is more applicable to routing problem on open roads. To consider a

more complex traffic system in urban areas, we propose a continuous-time traffic network model.

In a city road network, a vehicle can choose from a number of paths that connect the starting

point and the destination. We model vehicles departing as a point process (Daley and Vere-Jones,

2007) in which the time interval between two successive vehicles is a random variable with a known

distribution. Besides the challenge of selecting the shortest path in a traffic network, the vehicle

faces challenges from the highly random nature of future traffic flow along each possible path.

A huge volume of data is clustered for Waze. Waze must be able to clean, analyze, and make

predictions and recommendations for each vehicle in real-time. The information design problem

for urban traffic appears to remain challenging. For the problem to be fully tackled, processors of

extremely high computing power need to be onboard for each autonomous vehicle.

More broadly speaking, we study the economic approach of robotic coordination. We emphasize

that, in the era of the IoT, normative economic models can be applied to directing robots’ behavior.

Instead of understanding human behavior, economists may want to take the opportunity to guide

optimal robotic actions. For example, besides the routing problem studied in this paper, the

information design framework can be applied in many different settings, including the parking

problems, autonomous freight trains and trucks, and aircraft take-off and landing control, etc.

In the next section, we start with a static model to present preliminary approach and to illustrate

the idea of information design. In Section 3, we study the general dynamic framework of either a

single vehicle departing at a time or multiple vehicles departing simultaneously. These two models

are more applicable to the problem of intercity or long-distance travel. In Section 4, we study the

model of travel in urban areas. In Section 5, we discuss the results and conclude the paper.

together. In §3, we examine a generalized model in which any number of vehicles depart within a short predefined
time interval.

3A stochastic action recommendation is an actual recommendation generated by an optimized random generator.
It is well known in game theory and is rationalized by expected utility theory.
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2 Static models

We consider the simple example of two routes from a given starting point to a given destination.

Route 1 is on the highways and Route 2 is on a frontage road. In addition, other vehicles can merge

onto Route 1 as illustrated in Figures 2 and 3. Congestions can occur on either road. The capacity

of route j is assumed to be sj , s1 > s2.

A finite set of I autonomous vehicles are departing simultaneously, all heading for their in-

dividual destinations. Each vehicle can choose between Route 1 and Route 2. We write Ai =

{Route 1,Route 2} for the action set of vehicle i. Upon departure, the vehicle is informed about

the current traffic situation on each road.4 Specifically, if there is congestion, Waze tells each ve-

hicle the number of vehicles in the queue on route j, Dj , j = 1, 2. However, departing vehicles are

not sure whether merging traffic will be joining the queue in front of them. Let θ be the state of

the merging traffic,

θ =

 λ, with probability ψ(λ)

0, with probability ψ(0)

That is, with probability ψ(λ), λ vehicles merge onto the highway in front of departing vehicles.

Let Θ = {0, λ} be the set of possible states and let ψ ∈ ∆(Θ) define the common prior belief of

vehicles about the traffic state.

The utility function of vehicle i is defined as ui : A × Θ → R. Since the prior distribution

is uniquely specified by ψ, with a little abuse of notation, we define the basic game as G =

((Ai, ui)
I
i=1,Θ, ψ).

The information designer wants to find a decision rule σ : Θ→ ∆(A) that minimizes the total

waiting time of the vehicles. A decision rule is basically a distribution over actions for each traffic

state. In a symmetric setting (the basic game and the objective of the information designer are

symmetric), we can focus on symmetric decision rules. We define σ(a|θ) as the probability of taking

action a given the state θ. Then, for a vehicle obeying recommendations, the ex ante distribution

4We make this assumption because the owner of a vehicle can decide whether to depart or not based on the traffic
volume. An alternative assumption is that the vehicle has no information about the traffic upon departure and relies
fully on the specifically designed information later provided by Waze. That is, Waze has complete control over the
vehicle. However, making the alternative assumption will strengthen our results. That is, Waze can make the traffic
system even more efficient.
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over states and action is given by σ(a|θ)ψ(θ), and the vehicle’s belief is updated by Bayes’ rule:

σ(a|θ)ψ(θ)∑
θ σ(a|θ)ψ(θ)

.

A decision rule is a Bayes correlated equilibrium (BCE) if it satisfies the following obedience

condition: A player has no incentive to deviate from the recommendation given by the information

designer. This condition defines a set of linear constraints. Subject to these constraints, the

information designer maximizes welfare or profit. As shown by Bergemann and Morris (2016), an

expanded information structure can achieve the BCE as a Bayes Nash equilibrium (BNE). In other

words, by providing additional signals to the players, a BCE decision rule can be decentralized as

a BNE.

2.1 Single vehicle

We first apply the idea of Bayesian persuasion (Kamenica and Gentzkow, 2011) and consider the

following benchmark setting. There is only one vehicle. By Little’s (1961) Law,5 if the vehicle

chooses Route 1, the waiting time is D1+θ
s1

; if the vehicle chooses Route 2, the waiting time is D2
s2

.

State

θ = λ θ = 0

Action Route 1 D1+λ
s1

D1
s1

Route 2 D2
s2

D2
s2

In this setting, the decision rule σ : Θ → ∆(A) specifies the probability of choosing Route 1

p(θ), conditional on the world’s true state θ ∈ Θ. This decision can be viewed as a stochastic action

recommendation. For simplicity, let ψ(λ) = ψ. Then, ψ(0) = 1− ψ.

Given the vehicle’s prior regarding the traffic and its update of the belief by Bayes’ rule, then

it will obey the recommendation if the following inequalities hold.

D1 + λ

s1
p(λ)ψ +

D1

s1
p(0)(1− ψ) ≤ D2

s2
p(λ)ψ +

D2

s2
p(0)(1− ψ), (1)

D2

s2
(1− p(λ))ψ +

D2

s2
(1− p(0))(1− ψ)

≤ D1 + λ

s1
(1− p(0))ψ +

D1

s1
(1− p(0))(1− ψ). (2)

5Little’s (1961) Law, where l = λw, asserts that the time-averaged number of customers in a queueing system, l,
is equal to the rate at which customers arrive and enter the system, λ, times the average sojourn time of a customer,
w.
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Figure 2: The model of a single vehicle departing at a time

Inequality (1) means that, if Waze asks the vehicle to choose Route 1, then the vehicle has no

incentive to deviate from thst recommendation. Note that, p(λ)ψ
p(λ)ψ+p(0)(1−ψ) is the ex ante probability

of θ = λ, and p(0)(1−ψ)
p(λ)ψ+p(0)(1−ψ) is the ex ante probability of θ = 0. Thus, inequality (1) means that,

the posterior expectation of the waiting time if driving on Route 1 is less than that of driving on

Route 2. Hence, the vehicle follows the recommendation. Similarly, inequality (2) means that the

vehicle will choose Route 2 if it is recommended to do so.

The objective of Waze is to minimize the vehicle’s expected waiting time of the vehicle. In other

words, the Waze’s problem (P1) is

(P1) infp(θ) Eθ
[(

D1 + θ

s1

)
p(θ) +

(
D2

s2

)
(1− p(θ))

]
s.t.

D1 + λ

s1
p(λ)ψ +

D1

s1
p(0)(1− ψ) ≤ D2

s2
p(λ)ψ +

D2

s2
p(0)(1− ψ),

D2

s2
(1− p(λ))ψ +

D2

s2
(1− p(0))(1− ψ) ≤ D1 + λ

s1
(1− p(0))ψ +

D1

s1
(1− p(0))(1− ψ),

0 ≤ p(θ) ≤ 1, ∀θ.

Denoting the optimal value of the above problem by V1(D1, D2), we obtain the following proposition

that characterizes the optimal solution and the value function.

Proposition 1. The optimal solution to Waze’s problem (P1) is given by

(i) if D2
s2
≤ D1

s1
, p∗(λ) = p∗(0) = 0, V1(D1, D2) = D2

s2
;

(ii) if D1
s1
< D2

s2
≤ D1+λ

s1
, p∗(λ) = 0, p∗(0) = 1, V1(D1, D2) = D1+λ

s1
(1− ψ) + D2

s2
ψ;

(iii) if D1+λ
s1

< D2
s2

, p∗(λ) = 1, p∗(0) = 1, V1(D1, D2) = D1+ψλ
s1

.
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Note that, when D2
s2
≤ D1

s1
or D1+λ

s1
< D2

s2
, Waze’s recommendation is consistent with the

vehicle’s decentralized decisions. In contrast, when D1
s1

< D2
s2
≤ D1+λ

s1
, Waze makes different

recommendations given different traffic states. Without Waze, the vehicle compares the expected

waiting time if choosing Route 1, which is D1+ψλ
s1

, and the waiting time if taking Route 2, D2
s2

.

Thus, the waiting time of a vehicle without Waze is given by

U1(D1, D2) = min{D1 + ψλ

s1
,
D2

s2
}.

Comparing V1(D1, D2) with U1(D1, D2), we conclude that, in terms of expectations, Waze helps a

vehicle to save a waiting time of

U1(D1, D2)− V1(D1, D2) = min

{
ψ

(
D1 + λ

s1
− D2

s2

)
, (1− ψ)

(
D2

s2
− D1

s1

)}
> 0.

2.2 Two vehicles

Consider the case of two vehicles. If both vehicles choose to drive on the same route, no matter

the state of the route, both vehicles experience more traffic. Specifically, if both vehicles choose

Route 1, then the average waiting time of each vehicle is given by (D1 + θ+ 1
2)/s1; if both vehicles

choose Route 2, then the average waiting time of each vehicle is given by (D2 + 1
2)/s2. Thus, we

can summarize the waiting times for different states and strategies in the following tables.

vehicle 2

θ = λ Route 1 Route 2

vehicle 1 Route 1 (
D1+λ+ 1

2
s1

,
D1+λ+ 1

2
s1

) (D1+λ
s1

, D2
s2

)

Route 2 (D2
s2
, D1+λ

s1
) (

D2+ 1
2

s2
,
D2+ 1

2
s2

)

vehicle 2

θ = 0 Route 1 Route 2

vehicle 1 Route 1 (
D1+ 1

2
s1

,
D1+ 1

2
s1

) (D1
s1
, D2
s2

)

Route 2 (D2
s2
, D1
s1

) (
D2+ 1

2
s2

,
D2+ 1

2
s2

)

In this case, a decision rule consists of the stochastic recommendation for a vehicle to choose

Route 1 as in §2.1. It also includes the probability of both vehicles choosing Route 1 under each

state. We define p(n|θ) as the probability of n vehicles choosing Route 1, n = 0, 1, 2. Then, the
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Figure 3: The model of multiple vehicles departing at the same time

obedience conditions for a representative vehicle are given by

Eθ

[
D1 + θ + 1

2

s1
p(2|θ) +

D1 + θ

s1

p(1|θ)
2

]
≤ Eθ

[
D2

s2
p(2|θ) +

D2 + 1
2

s2

p(1|θ)
2

]
, (3)

Eθ

[
D2 + 1

2

s2
p(0|θ) +

D2

s2

p(1|θ)
2

]
≤ Eθ

[
D1 + θ

s1
p(0|θ) +

D1 + θ + 1
2

s1

p(1|θ)
2

]
. (4)

Then, the Waze’s problem can be written as

(P2) infp(n|θ) Eθ

[
2

(
D1 + θ + 1

2

s1

)
p(2|θ) +

(
D1 + θ

s1
+
D2

s2

)
p(1|θ) + 2

(
D2 + 1

2

s2

)
p(0|θ)

]
s.t. (3) & (4),

2∑
n=0

p(n|θ) = 1, ∀θ,

0 ≤ p(n|θ) ≤ 1, ∀θ, n = 0, 1, 2.

Let us denote the optimal value of the above problem by V2(D1, D2). The following proposition

characterizes the optimal solution and the value function.
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Proposition 2. The value function of (P2) is given by

V2(D1, D2) = supu′1,u′2≥0 ψmin

{
2

(
D1 + λ+ 1

2

s1

)
+

(
D1 + λ+ 1

2

s1
− D2

s2

)
u′1,(

D1 + λ

s1
+
D2

s2

)
+

(
D1 + λ

2s1
−
D2 + 1

2

2s2

)
u′1 +

(
D2

2s2
−
D1 + λ+ 1

2

2s1

)
u′2,

2

(
D2 + 1

2

s2

)
+

(
D2 + 1

2

s2
− D1 + λ

s1

)
u′2

}

+(1− ψ) min

{
2

(
D1 + 1

2

s1

)
+

(
D1 + 1

2

s1
− D2

s2

)
u′1,(

D1

s1
+
D2

s2

)
+

(
D1

2s1
−
D2 + 1

2

2s2

)
u′1 +

(
D2

2s2
−
D1 + 1

2

2s1

)
u′2,

2

(
D2 + 1

2

s2

)
+

(
D2 + 1

2

s2
− D1

s1

)
u′2

}
.

i) If
D2+ 1

2
s2
≤ D1

s1
, p∗(1|θ) = p∗(2|θ) = 0, p∗(0|θ) = 1, ∀θ.

V2(D1, D2) = 2

(
D2 + 1

2

s2

)
.

ii) If D1
s1
<

D2+ 1
2

s2
≤ D1+ψλ

s1
,

V2(D1, D2) = supu′1≥0 ψmin

{
2

(
D1 + λ+ 1

2

s1

)
+

(
D1 + λ+ 1

2

s1
− D2

s2

)
u′1,(

D1 + λ

s1
+
D2

s2

)
+

(
D1 + λ

2s1
−
D2 + 1

2

2s2

)
u′1, 2

(
D2 + 1

2

s2

)}

+(1− ψ) min

{
2

(
D1 + 1

2

s1

)
+

(
D1 + 1

2

s1
− D2

s2

)
u′1,(

D1

s1
+
D2

s2

)
+

(
D1

2s1
−
D2 + 1

2

2s2

)
u′1, 2

(
D2 + 1

2

s2

)}
.

In particular, if
D1+ 1

2
s1

> D2
s2

, then p∗(1|0) = 1 and p∗(2|0) = p∗(0|0) = 0.
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iii) If
D1+ψλ+ 1

2
s1

< D2
s2
≤ D1+λ+ 1

2
s1

,

V2(D1, D2) = supu′2≥0 ψmin

{
2

(
D1 + λ+ 1

2

s1

)
,

(
D1 + λ

s1
+
D2

s2

)
+

(
D2

2s2
−
D1 + λ+ 1

2

2s1

)
u′2,

2

(
D2 + 1

2

s2

)
+

(
D2 + 1

2

s2
− D1 + λ

s1

)
u′2

}

+(1− ψ) min

{
2

(
D1 + 1

2

s1

)
,

(
D1

s1
+
D2

s2

)
+

(
D2

2s2
−
D1 + 1

2

2s1

)
u′2,

2

(
D2 + 1

2

s2

)
+

(
D2 + 1

2

s2
− D1

s1

)
u′2

}
.

In particular, if
D2+ 1

2
s2

> D1+λ
s1

, then p∗(1|λ) = 1 and p∗(2|λ) = p∗(0|λ) = 0.

iv) If D2
s2
>

D1+λ+ 1
2

s1
, p∗(0|θ) = p∗(1|θ) = 0, p∗(2|θ) = 1, ∀θ.

V2(D1, D2) = 2

(
D2 + ψλ+ 1

2

s1

)
.

The above proposition illustrates the solution to the two-vehicle problem. Specifically, when

there is rather long queue on Route 1 compared to Route 2, that is
D2+ 1

2
s2

≤ D1
s1

, Waze routes

both departing vehicles to Route 2. In ii) of Proposition 2, D1
s1

<
D2+ 1

2
s2
≤ D1+ψλ

s1
. The condition

indicates that, the waiting time for both vehicles to go through Route 2 is less than the expected

waiting time of either vehicle to go through Route 1, but longer than the waiting time for a single

vehicle to choose Route 1 if there is no other traffic on it. Thus, the key is to make a vehicle obey

the recommendation of choosing Route 1 if it is optimal to do so. Technically, in this region, we

only need to focus on obedience condition (3). Moreover, if
D1+ 1

2
s1

> D2
s2

, then, when no traffic

merging onto Route 1, the optimal solution is to route one vehicle to Route 1 and the other to

Route 2. Thus, we will provide personalized private information to both vehicles such that their

beliefs about the optimal route are different.

Similarly, when the traffic queue on Route 2 is significantly longer than that on Route 1, it is

optimal to route both vehicles to Route 1. In iii) of Proposition 2, the condition
D1+ψλ+ 1

2
s1

< D2
s2
≤

D1+λ+ 1
2

s1
means that, in terms of expectations, both vehicles taking Route 1 is better than a single

vehicle taking Route 2, but is worse when traffic is merging onto Route 1. Therefore, it is critical

to let vehicles obey the instruction of choosing Route 2 when it is beneficial to do so. In other

words, we focus on obedience condition (4). On top of this, if
D2+ 1

2
s2

> D1+λ
s1

, then it is optimal to
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give different recommendations to the two vehicles.

To further analyze the problem, we first introduce the following theorem.

Theorem 1 (Bergemann and Morris, 2016). A decision rule σ is a BCE of (G,S) if and only if,

for some expansion S∗ of S, there is a BNE of (G,S∗) that induces σ.

The above theorem indicates that a BNE of game (G,S) induces a BCE decision rule. A direct

implication is that, without Waze’s specific instruction, the outcome of the game – the total waiting

time of the two vehicles – is worse. To illustrate, let U2(D1, D2) be the total waiting time of the

two vehicles under BNE. Then,

U2(D1, D2) =

supu′1,u′2≥0 min

{
2

(
D1 + ψλ+ 1

2

s1

)
+

(
D1 + ψλ+ 1

2

s1
− D2

s2

)
u′1,(

D1 + ψλ

s1
+
D2

s2

)
+

(
D1 + ψλ

2s1
−
D2 + 1

2

2s2

)
u′1 +

(
D2

2s2
−
D1 + ψλ+ 1

2

2s1

)
u′2,

2

(
D2 + 1

2

s2

)
+

(
D2 + 1

2

s2
− D1 + ψλ

s1

)
u′2

}
. (5)

It appears that U2(D1, D2) ≥ V2(D1, D2). Note that, Waze is particularly useful when U2(D1, D2) >

V2(D1, D2), which indicates that, with the vehicles’ following Waze’s instructions, the total waiting

time is strictly decreased. This situation could arise when D1
s1
− 1

2s2
< D2

s2
<

D1+λ+ 1
2

s1
. In other

words, when there is no huge difference in waiting time between two routes and the routing decisions

vary with the traffic’s exact situation, the augmented reality generated by Waze will significantly

adjust the vision of the vehicles.

Now, we characterize the optimal information structure Waze should provide. We focus on the

case in which D1
s1
<

D2+ 1
2

s2
≤ D1+ψλ

s1
and

D1+ 1
2

s1
> D2

s2
, where the optimal value function is shown in

ii) of Proposition 2. Consider the following three information structures: (1) no augmented reality,

(2) complete information, and (3) an optimal BCE information structure.

1. No augmented reality

If no additional information is provided to the vehicles, then the outcome is a BNE and the resultant

total waiting time is given by U2(D1, D2). From (5), we obtain

U2(D1, D2) = 2

(
D2 + 1

2

s2

)
.
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Under the BNE, both vehicles choose Route 2.

2. Complete information

Waze lets both vehicles know the exact state of the traffic. If θ = λ, both vehicles choose Route 2.

If θ = 0, then there are three equilibria: (Route 1, Route 2), (Route 2, Route 1), and the mixed

(pmRoute 1+(1− pm) Route 2, pmRoute 1+(1− pm)Route 2) with pm = 2
(
D2
s2
− D1

s1

)
/( 1
s1

+ 1
s2

).6

Thus, the expected total waiting time is

UC2 (D1, D2) = 2ψ

(
D2 + 1

2

s2

)
+ (1− ψ)

[
pm

(
D1 + 1

2

s1
+
D2

s2

)
+ (1− pm)

(
D1

s1
+
D2 + 1

2

s2

)]
≤ U2(D1, D2).

3. Optimal BCE information structure

Consider two possible signals Ti = {tf , ts} given to vehicle i and a distribution π : Θ→ ∆(T ) where

T = T1 × T2. If θ = λ, then both vehicles receive the same information indicating that the traffic

is relatively light on Route 2. If θ = 0, then either vehicle (but not both) receives the information

indicating that the traffic on Route 1 is relative light. Formally, the distribution π is

π(·|0) tf ts

tf 0 0

ts 0 1

π(·|λ) tf ts

tf 0 1/2

ts 1/2 0

Provided with the information structure (T, π), vehicle i has the BNE strategy

βi(ti) =

 Route 1, if ti = tf ,

Route 2 if ti = ts.

Under this strategy, the total waiting time of the wo vehicles is

V2(D1, D2) = ψ

(
D2 + 1

2

s2

)
+ (1− ψ)

(
D1

s1
+
D2

s2

)
≤ UC2 (D1, D2).

In summary, V2(D1, D2) ≤ UC2 (D1, D2) ≤ U2(D1, D2). That is, among the three information

structures we present, providing complete information is better than providing no information, and

the optimal BCE information structure leads to the shortest total waiting time.

6We assume D2
s2

> D1
s1

. Other cases can be analyzed similarly.
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It is interesting that providing the same additional accurate information to two vehicles may not

be the best strategy. In fact, to coordinate vehicles, a better strategy is to privately communicate

different information when splitting traffic flow will induce socially efficient use of the road system.

3 Dynamic models

3.1 Single vehicle departing at given times

Consider a periodic review model of traffic routing (Figure 2). Two parallel routes connect the

starting point and the destination: Route 1 and Route 2. The capacity of a bottleneck on route j

is assumed to be sj . At the beginning of each period, one vehicle departs from the starting point.

The vehicle is informed about Dj , the number of vehicles in the queue on route j, by the end of

the last period. We assume other vehicles can merge onto Route 1 and join the queue. Thus, if the

vehicle chooses Route 1, by the time it joins the queue, the queue length will be D1 + θ, where

θ =

 λ, with probability ψ,

0, with probability 1− ψ.

The realization of θ is known only by Waze and not by the vehicle. On the other hand, if the

vehicle chooses Route 2, by the time it joins the queue, the queue length will be D2.

When the vehicle departs, Waze makes a recommendation p(θ) to the vehicle based on the

realization of θ. Let p(0) and p(λ) be the stochastic recommendations of choosing Route 1 given

θ = 0 and θ = λ, respectively. Then, the vehicle will follow the recommendation if

D1 + λ

s1
p(λ)ψ +

D1

s1
p(0)(1− ψ) ≤ D2

s2
p(λ)ψ +

D2

s2
p(0)(1− ψ), (6)

D2

s2
(1− p(λ))ψ +

D2

s2
(1− p(0))(1− ψ)

≤ D1 + λ

s1
(1− p(0))ψ +

D1

s1
(1− p(0))(1− ψ). (7)

Waze’s problem can be formulated as a dynamic programming problem. Let V3(D1, D2) be the
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profit-to-go function starting from the state (D1, D2). The Bellman equation is given by

V3(D1, D2) =

(P3) infp(θ) Eθ
{(

D1 + θ

s1
+ V3((D1 + θ + 1− s1)+, (D2 − s2)+)

)
p(θ)

+

(
D2

s2
+ V3((D1 + θ − s1)+, (D2 + 1− s2)+)

)
(1− p(θ))

}
s.t.

D1 + λ

s1
p(λ)ψ +

D1

s1
p(0)(1− ψ) ≤ D2

s2
p(λ)ψ +

D2

s2
p(0)(1− ψ),

D2

s2
(1− p(λ))ψ +

D2

s2
(1− p(0))(1− ψ)

≤ D1 + λ

s1
(1− p(λ))ψ +

D1

s1
(1− p(0))(1− ψ),

0 ≤ p(θ) ≤ 1,∀θ.

The terminal condition is given by V3(0, 0) = 0.

First, note that, when D1 ≤ s1 and D2 ≤ s2, the above problem is equivalent to (P1). Therefore,

V3(D1, D2) = V1(D1, D2), if D1 ≤ s1 and D2 ≤ s2.

Next, we separate the state space into four regions.

Region I. D2
s2
≤ D1

s1
.

In this region, there is no strictly positive p(θ) such that constraint (6) is satisfied. Thus,

p(θ) = 0,∀θ. This means that Waze is unable to change the choice of the vehicle and the vehicle

will choose Route 2. Thus, we obtain

V3(D1, D2) =
D2

s2
+ EθV3((D1 + θ − s1)+, (D2 + 1− s2)+).

Region II. D1
s1
< D2

s2
≤ D1+ψλ

s1
.

In this region, constraint (6) implies constraint (7). Thus, we can ignore constraint (7).

Region III. D1+ψλ
s1

< D2
s2
≤ D1+λ

s1
.

In this region, constraint (7) implies constraint (6). Thus, we can ignore constraint (6).

Region IV. D1+λ
s1

< D2
s2

.

In this region, there is no p(θ) strictly less than one such that constraint (7) is satisfied. Thus,

p(θ) = 1,∀θ. This means that Waze is unable to change the choice of the vehicle and the vehicle

will choose Route 1.
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Next, we demonstrate the improvement in efficiency achieved by Waze. Let U3(D1, D2) be the

total expected waiting time of the vehicles without Waze. Each departing vehicle chooses the route

with the shortest expected waiting time. Then,

U3(D1, D2) =


D1+ψλ
s1

+ EθU3((D1 + 1 + θ − s1)+, (D2 − s2)+), if D1+ψλ
s1

≤ D2
s2
,

D2
s2

+ EθU3((D1 + θ − s1)+, (D2 + 1− s2)+), if D1+ψλ
s1

> D2
s2
.

To see that U3(D1, D2) ≥ V3(D1, D2), we rewrite U3(D1, D2) as the value function for the

following programming (P3’).

U3(D1, D2)

= infp Eθ
{(

D1 + ψλ

s1
+ V ((D1 + θ + 1− s1)+, (D2 − s2)+)

)
p

+

(
D2

s2
+ V ((D1 + θ − s1)+, (D2 + 1− s2)+)

)
(1− p)

}
s.t.

D1 + ψλ

s1
p ≤ D2

s2
p,

D2

s2
(1− p) ≤ D1 + ψλ

s1
(1− p),

p ∈ {0, 1}

= infp(θ) Eθ
{(

D1 + θ

s1
+ V ((D1 + θ + 1− s1)+, (D2 − s2)+)

)
p(θ)

+

(
D2

s2
+ V ((D1 + θ − s1)+, (D2 + 1− s2)+)

)
(1− p(θ))

}
s.t.

D1 + λ

s1
p(λ)ψ +

D1

s1
p(0)(1− ψ) ≤ D2

s2
p(λ)ψ +

D2

s2
p(0)(1− ψ),

D2

s2
(1− p(λ))ψ +

D2

s2
(1− p(0))(1− ψ)

≤ D1 + λ

s1
(1− p(λ))ψ +

D1

s1
(1− p(0))(1− ψ),

p(0) = p(λ),

0 ≤ p(θ) ≤ 1,∀θ.

From the above transformation, we can see that the feasible set of (P3’) is a subset of the that of

(P3). In addition, programming models (P3) and (P3’) have the same objective function. Thus, we

obtain U3(D1, D2) ≥ V3(D1, D2). Since the total waiting time is reduced under Waze’s instruction,

we conclude that the innovative Waze makes the traffic system more efficient.
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3.2 Multiple vehicles departing at given times

We study a dynamic traffic congestion model over a time period [0, T ] (Figure 3). In this general

model, we formulate a discrete time model with time intervals of length h. At the beginning of

each time interval, Waze counts the number of vehicles that are ready to depart. At time t, I(t)

vehicles are departing.7 We again consider two parallel routes, Route 1 and Route 2. Each route j

has two segments with fixed travel times, h and tj0, repectively. A delay can occur on each route at

a bottleneck on the second segment. The capacity of a bottleneck on route j is assumed to be sj .

That is, after driving for a time h, a vehicle might see the traffic queue. If there is congestion on a

route, then the travel time of a vehicle with departure time t is the sum of fixed travel times and

the delay time tjν(t|θ). In other words, the total travel time of a vehicle departing at t on route j is

ttj(t|θ) = h+ tj0 + tjν(t|θ).

Let Dj(t|θ) be the number of vehicles in the queue on route j at time t. By Little’s Law, we

obtain

tjν(t|θ) =
Dj(t+ h|θ)

sj
.

Let Rj(t) be the number of vehicles departing in the time interval [t, t + h] on route j. Then,

the dynamics of Dj(t|θ) are

Dj(t+ h|θ) =

 Dj(t|θ) + 1
2(Rj(t)− 1)+ − hsj for congestion,

0 for no congestion,

= [Dj(t|θ) +
1

2
(Rj(t)− 1)+ − hsj ]+.

Thus,

ttj(t|θ) = h+ tj0 +
Dj(t|θ) + 1

2(Rj(t)− 1)+ − hsj
sj

for congestion.

The state of the world θ specifies the queue length on each route at time t = 0.

Now we consider the vehicle’s strategy. Vehicle i departing in the time interval [t, t + h] can

7We assume h is given. In practice, it would be interesting to study how to set the length of a time interval. The
tradeoff is that, if h is small, then the problem size is small. However, Waze has to compute the optimal solution
quickly. If h is set to be long, then the problem size is large, but the speed requirement for computation is lower.
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choose either Route 1 or Route 2. Let ai(t) be the vehicle’s strategy,

ai(t) =

 1 if vehicle i chooses Route 1,

0 otherwise.

Then,

R1(t) =

I(t)∑
i=1

ai(t),

R2(t) =

I(t)∑
i=1

(1− ai(t)) = I(t)−
I(t)∑
i=1

ai(t).

For simplicity, the utility function is defined as the negative of the total travel time.

u1((ai(t), a−i(t))|θ) = −

[
h+ t10 +

D1(t|θ) + 1
2(
∑I(t)

i=1 ai(t)− 1)+ − hs1

s1

]
,

u2((ai(t), a−i(t))|θ) = −

[
h+ t20 +

D2(t|θ) + 1
2(
∑I(t)

i=1(1− ai(t))− 1)+ − hs2

s2

]
.

Similar to previous sections, the decision rule σt : Θ → ∆(A) specifies the probability over the

action set A conditional on the world’s true state at time t. Note that, here, we focus on symmetric

decision rules, given that the basic game is symmetric and we will consider a symmetric objective

function. The obedience condition is given by the linear inequality:

∑
a−i∈A−i,θ∈Θ

u1((ai = 1, a−i)|θ)σt((ai = 1, a−i)|θ) ≥
∑

a−i∈A−i,θ∈Θ

u2((ai = 0, a−i)|θ)σt((ai = 1, a−i)|θ),

and

∑
a−i∈A−i,θ∈Θ

u2((ai = 0, a−i)|θ)σt((ai = 0, a−i)|θ) ≥
∑

a−i∈A−i,θ∈Θ

u1((ai = 1, a−i)|θ)σt((ai = 0, a−i)|θ).

The objective function is defined as

(P4) maxEθ

∑
t

∑
a(t)∈A

(∑
i

ai(t)u1(a(t)|θ) +
∑
i

(1− ai(t))u2(a(t)|θ)

)
σt(a(t)|θ)

 .
Note that this optimization problem has O(2I(t)) decision variables for period t. However, by the
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symmetry of the game, we can reduce the number of decision variables to O(I(t)) for period t.

Specifically, we can write

∑
∑
ai(t)=n

σt(a(t))|θ) = p(n, t|θ), n = 0, · · · , I(t),

where p(n, t|θ) is the probability of n vehicles choosing Route 1 at time t. Then the obedience

condition can be written as

∑
n∈{1,··· ,I(t)},θ∈Θ

−

[
h+ t10 +

D1(t|θ) + 1
2(n− 1)− hs1

s1

]
n

I(t)
p(n, t|θ)ψ(θ)

≥
∑

n∈{1,··· ,I(t)},θ∈Θ

−

[
h+ t20 +

D2(t|θ) + 1
2(I(t)− n)− hs2

s2

]
n

I(t)
p(n, t|θ)ψ(θ) ∀t,

and

∑
n∈{0,··· ,I(t)−1},θ∈Θ

−

[
h+ t20 +

D2(t|θ) + 1
2(I(t)− n− 1)− hs2

s2

]
I(t)− n
I(t)

p(n, t|θ)ψ(θ)

≥
∑

n∈{0,··· ,I(t)−1},θ∈Θ

−

[
h+ t10 +

D1(t|θ) + 1
2n− hs1

s1

]
I(t)− n
I(t)

p(n, t|θ)ψ(θ) ∀t.

The objective function is transformed into

minEθ

 ∑
n∈{0,··· ,I(t)},t

[(
t10 +

D1(t|θ) + 1
2(n− 1)

s1

)
n

+

(
t20 +

D2(t|θ) + 1
2(I(t)− n− 1)

s2

)
(I(t)− n)

]
p(n, t|θ)

}
.
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In sum, we have the following linear programming (PBCE):

min
∑

n∈{0,··· ,I(t)}
t=1,··· ,T,θ∈Θ

[(
t10 +

D1(t|θ) + 1
2(n− 1)

s1

)
n

+

(
t20 +

D2(t|θ) + 1
2(I(t)− n− 1)

s2

)
(I(t)− n)

]
p(n, t|θ)ψ(θ)

s.t.
∑

n∈{1,··· ,I(t)},θ∈Θ

−

[
h+ t10 +

D1(t|θ) + 1
2(n− 1)− hs1

s1

]
n

I(t)
p(n, t|θ)ψ(θ)

≥
∑

n∈{1,··· ,I(t)},θ∈Θ

−

[
h+ t20 +

D2(t|θ) + 1
2(I(t)− n)− hs2

s2

]
n

I(t)
p(n, t|θ)ψ(θ) ∀t, (8)

∑
n∈{0,··· ,I(t)−1},θ∈Θ

−

[
h+ t20 +

D2(t|θ) + 1
2(I(t)− n− 1)− hs2

s2

]
I(t)− n
I(t)

p(n, t|θ)ψ(θ)

≥
∑

n∈{0,··· ,I(t)−1},θ∈Θ

−

[
h+ t10 +

D1(t|θ) + 1
2n− hs1

s1

]
I(t)− n
I(t)

p(n, t|θ)ψ(θ) ∀t, (9)

∑
n∈{0,··· ,I(t)}

p(n, t|θ) = 1 ∀t, θ, (10)

p(n, t|θ) ≥ 0 ∀n, t, θ. (11)

Specifically, let βt = (βt,1(a1(t)), · · · , βt,I(t)(aI(t)(t))) be a BNE strategy profile. Then, the BCE

strategy σ̃ induced by this BNE strategy is defined as

σ̃(a(t))|θ) ,
I(t)∏
i=1

βt,i(ai(t)), ∀t, θ.

Let us denote ∑
∑
ai(t)=n

σ̃t(a(t))|θ) = p̃(n, t|θ), n = 0, · · · , I(t).

By Theorem 1, we know that p̃ satisfies conditions (8)–(11). Thus, p̃ is a feasible solution to the
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following programming (PBNE):

min
∑

n∈{0,··· ,I(t)}
t=1,··· ,T,θ∈Θ

[(
t10 +

D1(t|θ) + 1
2(n− 1)

s1

)
n

+

(
t20 +

D2(t|θ) + 1
2(I(t)− n− 1)

s2

)
(I(t)− n)

]
p(n, t|θ)ψ(θ)

s.t.
∑

n∈{1,··· ,I(t)},θ∈Θ

−

[
h+ t10 +

D1(t|θ) + 1
2(n− 1)− hs1

s1

]
n

I(t)
p(n, t|θ)ψ(θ)

≥
∑

n∈{1,··· ,I(t)},θ∈Θ

−

[
h+ t20 +

D2(t|θ) + 1
2(I(t)− n)− hs2

s2

]
n

I(t)
p(n, t|θ)ψ(θ) ∀t,

∑
n∈{0,··· ,I(t)−1},θ∈Θ

−

[
h+ t20 +

D2(t|θ) + 1
2(I(t)− n− 1)− hs2

s2

]
I(t)− n
I(t)

p(n, t|θ)ψ(θ)

≥
∑

n∈{0,··· ,I(t)−1},θ∈Θ

−

[
h+ t10 +

D1(t|θ) + 1
2n− hs1

s1

]
I(t)− n
I(t)

p(n, t|θ)ψ(θ) ∀t,

∑
n∈{0,··· ,I(t)}

p(n, t|θ) = 1 ∀t, θ,

p(n, t|θ) = p(n, t|θ′), ∀θ, θ′ ∈ Θ, (12)

p(n, t|θ) ≥ 0 ∀n, t, θ.

Note that the difference between (PBCE) and (PBNE) is that we impose the additional constraint

(12) in (PBNE). In fact, all feasible solutions to (PBNE) can define a BNE. Under constraint (12),

constraint (8) requires that Route 1 indeed be the best response for each vehicle whose BNE

strategy is to choose Route 1; constraint (9) requires that Route 2 indeed be the best response for

each vehicle whose BNE strategy is to choose Route 2. Clearly, the optimal value of (PBCE) is less

than that of (PBNE). Thus, without Waze, the total travel time of vehicles under a BNE is longer

than under a BCE.

We now consider the additional information structure required by the optimal decision rules.

Let p∗(n, t|θ) be the optimal solutions to LP (PBCE). Then, the optimal decision rule is

σ∗t (a(t))|θ) =
1(
I(t)
n

)p∗(n, t|θ), ∀a(t) :
∑

ai(t) = n, n = 0, · · · , I(t).

We consider two signals Ti = {tf , ts} that might be given to vehicle i and a distribution π : Θ →

23



∆(T ), where T = T1 × · · ·TI(t). π satisfies

π(t1, · · · , tI(t)|θ) = σ∗t (a(t))|θ),where ai(t) =

 1, if ti = tf

0 if ti = ts.

Given the information structure S = (T, π), a BNE strategy for the basic game (G,S) is

β∗i (ai(t)|ti) =

 1, if ti = tf

0 if ti = ts.

The total travel time of the decentralized game (G,S) under the strategy profile β∗ will be the

optimal value of (PBCE).

4 Urban traffic

In this section, we consider the information design problem for urban traffic (Figure 4). Instead of

selecting from two routes, as discussed in previous sections, we consider the routing problem in a

urban road network denoted by a directed graph (V,E). Here, V is the set of nodes (intersections)

and two special nodes, the source (starting point) s and the sink (destination) t, and E = (e) is

the set of edges. Vehicles departing from the source follow a point process (Daley and Vere-Jones,

2007). Each vehicle, upon departure, chooses a path to the sink. Let P be the set of all paths from

the source to the sink.

A vehicle departing at time t is informed about the current traffic volume (queue length) on

each edge e, De(t). However, it is not sure about the queue length at time t′ > t. Thus, for a path

p = (e0, · · · , en) ∈ P , the vehicle assumes that the queue length is Dei(t) + θei when it arrives at

the edge ei, i = 1, · · · , n. θp = (θe0 , · · · , θen) ∼ Fp(·) and θ = (θp)p∈P ∼ F (·). Specifically, from the

vehicle’s perspective, the travel time along e0 is given by

τe0 =
De0(t) + 1

se0
.

Thus, at time t+ τe0 , the vehicle arrives at edge e1. However, since it is not sure about De1(t+ τe0)

when it departs from s, it assumes De1(t+ τe0) = De1(t) + θe1 . Its travel time on e1 is then

τe1 =
De1(t) + θe1 + 1

se1
.
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Figure 4: A model of urban traffic

At time t + τe0 + τe1 , the vechile arrives at edge e2 and so on and so forth. Thus, to the vehicle,

the travel time on edge ei, τei(t), and the total travel time on path p, τp(t), are

τei(t) =
Dei(t) + θei + 1

sei
, and τp(t) =

n∑
i=0

τei(t).

Unlike the vehicle, Waze knows the dynamics of De(t), which are governed by

∂De(t)

∂t
=

 re(t)− se for congestion,

0 for no congestion,

where re(t) is the arrival rate at edge e.

The true travel time of a vehicle departing at time t driving on path p = (e0, · · · , en) ∈ P is

ttp(t) = te0(t) + · · ·+ ten(t),
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where

te0(t) =
De0(t) + 1

se0
,

te1(t) =
De1(t+ te0) + 1

se1
,

te2(t) =
De2(t+ te0 + te1) + 1

se2
,

· · ·

ten(t) =
De2(t+

∑n−1
i=0 tei) + 1

sen
.

Waze’s problem is to persuade each departing vehicle to choose the socially optimal path through

a stochastic path recommendation σ(p|θ) that specifies the probability of selecting path p given θ,

subject to the obedience conditions:

Eθ[τp(t)σ(p|θ)] ≤ Eθ[τp′(t)σ(p|θ)], ∀p′ ∈ P.

If the vehicle follows path p, then Waze updates its information on the arrival rate at each edge

ei that belongs to the chosen path. Specifically, the updated arrival rate r′ei(t
′) for time t′ > t is

r′ei(t
′) =

 re(t
′) + 1 if t′ =

∑i−1
i=0 tei(t),

re(t
′) otherwise.

∀i = 1, · · · , n.

For an edge that is not on the path p, the arrival rate does not change. r′e(t
′) = re(t), ∀e /∈ p.

In sum, we can write Waze’s information design problem in a urban area as follows:

V (re(t), e ∈ E) = inf Et′−t

∑
p∈P

ttp(t)σ(p|θ) + V (r′e(t
′), e ∈ E)


s.t. Eθ[τp(t)σ(p|θ)] ≤ Eθ[τp′(t)σ(p|θ)], ∀p′ ∈ P.

r′ei(t
′) =

 re(t
′) + 1 if t′ =

∑i−1
i=0 tei(t)

re(t
′) otherwise.

∀i = 1, · · · , n.

∑
p∈P

σ(p|θ) = 1,∀θ,

0 ≤ σ(p|θ) ≤ 1, ∀p, θ.
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5 Discussion and Conclusion

In this paper, we propose an economic approach that exploits the traffic data crowdsourced by

Waze and designs the information structure provided to autonomous vehicles to minimize the to-

tal travel delays. By implementing the optimal solutions suggested by the correlated equilibrium,

Waze is able to manage multiple vehicles moving on designated paths, which leads to better overall

traffic performance and utilization of the public roads over a long period. Our method of improv-

ing the efficiency of the traffic system deviates from the traditional economic approach, in which

mechanisms and policy (e.g., congestion pricing and surge pricing) are used to encourage more the

effective use of the services and the roads by shifting demand and supply.

We believe that our work is just a first step to theoretically characterizing and optimizing

routing problems for autonomous vehicles. Many critical and practical issues remain for further

research. We list a few below.

5.1 Heterogeneous vehicles

In this paper, we assume that all vehicles aim to minimize their own waiting times. That is,

vehicles have the same tolerance towards traffic delays and we cover the symmetric case of treating

all vehicles equally. It could be interesting to study an extension that relaxes this assumption

and uses utility functions to describe different characteristics of vehicles including the tightness of

schedules and priority.

Travelers on a public road system may have different attitudes towards congestion and thus

have different degrees of disutility for travel delays. Specifically, some business travelers experience

a high disutility from long travel time, since they have tight schedules, whereas leisure travelers are

less stressed by traffic jams. Alternatively, in a purely robotic system, a robot might be wanted at

a particular location and a given moment while another robot need only arrive at a certain place

within a few hours. When designing paths for robots in such a setting, it is critical to take into

account the disparity in the costs of delay incurred by different robots. Similarly to modeling human

beings, to formally model this disparity, we could also use a “disutility” measure to characterize

a robot’s level of suffering from the delay. Specifically, we introduce a utility function associated

with the travel delay for each vehicle (robot). In a linear representation, the utility of a vehicle i

which waits for τ units of time is given by ui(τ) = b − ciτ , where b denotes the utility of arriving

at the destination from the starting point and ci denotes the disutility of waiting per unit of time
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of vehicle i. Notice that, we allow different vehicles to be associated with different parameter ci,

which characterizes the disparity in tolerance towards delays. In these settings, models become

related to that of Kolotilin et al. (n.d.), which is a variation of that of Kamenica and Gentzkow

(2011).

Vehicles which suffer more from congestion are more willing to move along the express lane (if

there is one) compared to those suffering less from congestion. Thus, to differentiate various types

of vehicles, we can then introduce a pricing mechanism besides the information-based approach.

Hence, we can study the information/mechanism design problem in a setting where an express toll

lane is built for urgent vehicles. Vehicles can indicate their priority preferences and the willingness-

to-pay to move to the express lane by paying the toll.

To solve for the optimal toll and the information structure, Waze maximizes the sum of utilities

of all vehicles given the traffic conditions. Waze’s optimization problem is conditional on obedi-

ence conditions as in this paper. Besides, the optimal solution should also satisfy the incentive

compatibility constraints and individual rationality constraints as in general mechanism design

models.

5.2 Accidents and vehicles with priority

In the real world, traffic accidents usually cause severe congestion and require emergency vehicles

such as ambulances and police cars to arrive at the scene as soon as possible to save the injured

person, handle the accident, and direct the traffic. Thus, it is important for Waze to react quickly

to accidents and route cars to make way for emergency vehicles.

5.3 Intersections

Currently, traffic lights are used to control flows of traffic at road intersections. As autonomous

vehicles become pervasive, it will be possible to manage traffic at crossings through Waze. Fun-

damentally, this consists of a scheduling problem, in which Waze decides the optimal sequence of

vehicles from all directions, proceeding based on the data it collects. Then, given the most efficient

schedule, Waze optimizes on the speed at which a vehicle approaching the intersection. Travelers

could thus save significant amounts of time, since there is no more waiting at intersections. How-

ever, when the entire urban traffic system is considered, the problem is challenging both analytically

and computationally.
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Appendix

Proof of Proposition 2. To analyze the problem (P2), we first write the dual problem (DP2).

sup φ0 + φλ

s.t.

(
D1 + λ+ 1

2

s1
− D2

s2

)
ψu1 + φλ ≤ 2

(
D1 + λ+ 1

2

s1

)
ψ, (13)(

D1 + 1
2

s1
− D2

s2

)
(1− ψ)u1 + φ0 ≤ 2

(
D1 + 1

2

s1

)
(1− ψ), (14)(

D1 + λ

2s1
−
D2 + 1

2

2s2

)
ψu1 +

(
D2

2s2
−
D1 + λ+ 1

2

2s1

)
ψu2 + φλ

≤
(
D1 + λ

s1
+
D2

s2

)
ψ, (15)(

D1

2s1
−
D2 + 1

2

2s2

)
(1− ψ)u1 +

(
D2

2s2
−
D1 + 1

2

2s1

)
(1− ψ)u2 + φ0

≤
(
D1

s1
+
D2

s2

)
(1− ψ), (16)(

D2 + 1
2

s2
− D1 + λ

s1

)
ψu2 + φλ ≤ 2

(
D2 + 1

2

s2

)
ψ, (17)(

D2 + 1
2

s2
− D1

s1

)
(1− ψ)u2 + φ0 ≤ 2

(
D2 + 1

2

s2

)
(1− ψ), (18)

u1, u2 ≤ 0.

To further analyze the model, we divide the state space {(D1, D2)|D1, D2 ∈ N+} into five

regions. Let the value function be V2(D1, D2).

Region I.
D2+ 1

2
s2
≤ D1

s1
.

In this region, for any θ, there is no strictly positive p(1|θ) or p(2|θ) such that constraint (3) is

satisfied. Thus, p(1|θ) = p(2|θ) = 0, p(0|θ) = 1, ∀θ. Thus, we have

V2(D1, D2) = 2

(
D2 + 1

2

s2

)
.

Region II. D1
s1
<

D2+ 1
2

s2
≤ D1+ψλ

s1
.

In this region, constraint (3) implies constraint (4). Thus, we can ignore constraint (4). It

means that, in the dual problem (DP2), we can set the decision variable u2 to be 0. Now, (DP2)
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is transformed into the following problem.

(DP2II) sup ψmin

{
2

(
D1 + λ+ 1

2

s1

)
+

(
D1 + λ+ 1

2

s1
− D2

s2

)
u′1,(

D1 + λ

s1
+
D2

s2

)
+

(
D1 + λ

2s1
−
D2 + 1

2

2s2

)
u′1, 2

(
D2 + 1

2

s2

)}

+(1− ψ) min

{
2

(
D1 + 1

2

s1

)
+

(
D1 + 1

2

s1
− D2

s2

)
u′1,(

D1

s1
+
D2

s2

)
+

(
D1

2s1
−
D2 + 1

2

2s2

)
u′1, 2

(
D2 + 1

2

s2

)}
s.t. u′1 ≥ 0.

Notice that
D1

s1
+
D2

s2
< 2

(
D2 + 1

2

s2

)
.

Thus, p∗(0|0) = 0. Especially, if
D1+ 1

2
s1

> D2
s2

, then we have p∗(1|0) = 1 and p∗(2|0) = 0.

Region III. D1+ψλ
s1

− 1
2s2

< D2
s2
≤ D1+ψλ+ 1

2
s1

.

The problem is equivalent to solving the following 2-variable LP.

(DP2III) sup ψmin

{
2

(
D1 + λ+ 1

2

s1

)
+

(
D1 + λ+ 1

2

s1
− D2

s2

)
u′1,(

D1 + λ

s1
+
D2

s2

)
+

(
D1 + λ

2s1
−
D2 + 1

2

2s2

)
u′1 +

(
D2

2s2
−
D1 + λ+ 1

2

2s1

)
u′2,

2

(
D2 + 1

2

s2

)
+

(
D2 + 1

2

s2
− D1 + λ

s1

)
u′2

}

+(1− ψ) min

{
2

(
D1 + 1

2

s1

)
+

(
D1 + 1

2

s1
− D2

s2

)
u′1,(

D1

s1
+
D2

s2

)
+

(
D1

2s1
−
D2 + 1

2

2s2

)
u′1 +

(
D2

2s2
−
D1 + 1

2

2s1

)
u′2,

2

(
D2 + 1

2

s2

)
+

(
D2 + 1

2

s2
− D1

s1

)
u′2

}
s.t. u′1, u

′
2 ≥ 0.

Region IV.
D1+ψλ+ 1

2
s1

< D2
s2
≤ D1+λ+ 1

2
s1

.

In this region, constraint (4) implies constraint (3). Thus, we can ignore constraint (3). Now,
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(DP2) is transformed into the following problem.

(DP2IV) sup ψmin

{
2

(
D1 + λ+ 1

2

s1

)
,

(
D1 + λ

s1
+
D2

s2

)
+

(
D2

2s2
−
D1 + λ+ 1

2

2s1

)
u′2,

2

(
D2 + 1

2

s2

)
+

(
D2 + 1

2

s2
− D1 + λ

s1

)
u′2

}

+(1− ψ) min

{
2

(
D1 + 1

2

s1

)
,

(
D1

s1
+
D2

s2

)
+

(
D2

2s2
−
D1 + 1

2

2s1

)
u′2,

2

(
D2 + 1

2

s2

)
+

(
D2 + 1

2

s2
− D1

s1

)
u′2

}
s.t. u′2 ≥ 0.

Notice that
D1

s1
+
D2

s2
< 2

(
D2 + 1

2

s2

)
.

Thus, p∗(0|0) = 0. Especially, if
D1+ 1

2
s1

> D2
s2

, then we have p∗(1|0) = 1 and p∗(2|0) = 0.

Region V. D2
s2
>

D1+λ+ 1
2

s1
.

In this region, for any θ, there is no strictly positive p(0|θ) or p(1|θ) such that constraint (4) is

satisfied. Thus, p(0|θ) = p(1|θ) = 0, p(2|θ) = 1, ∀θ. It means that Waze will route every vehicle

to Route 1 no matter the state of the traffic. Thus, we have

V2(D1, D2) = 2

(
D2 + ψλ+ 1

2

s1

)
.
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